


Business	Analysis	Methodology	Book
	
	

Business	Analyst's	Guide	to	Requirements	Analysis,	Lean	UX	Design	and
Project	Management	at	Lean	Enterprises	and	Lean	Startups

	
*Including	Mobile	Software	Development	Project	Case	Study



	
Copyright	©	2015	EMRAH	YAYICI

All	rights	reserved.
No	part	of	this	book	may	be	reproduced	or	transmitted	in	any	form	or	by	any
means,	electronic,	mechanical,	photocopying,	recording	or	otherwise,	without

the	prior	written	permission	of	the	publisher.



	

About	the	Author

Emrah	Yayici	 is	 the	author	of	 the	best-selling	Business	Analyst’s	Mentor	Book
and	UX	Design	and	Usability	Mentor	Book.	He	is	one	of	the	managing	partners
of	UXservices,	BA-Works	and	Keytorc.

He	 started	 his	 career	 as	 a	 technology	 consultant	 at	 Arthur	 Andersen	 and
Accenture.	Afterward	he	 led	global	enterprise	 transformation	projects	at	Beko-
Grundig	Electronics.

During	 his	 career	 he	 has	 managed	 multinational	 and	 cross-functional	 project
teams	in	banking,	 insurance,	 telecommunications,	media,	consumer	electronics,
and	 IT	 industries.	 He	 is	 now	 sharing	 his	 experience	 about	 business	 analysis,
business	 development,	 product	 development,	 customer	 experience	 design,	 UX
design,	usability	testing,	and	quality	assurance	by	publishing	articles	and	books,
leading	training	sessions,	and	speaking	at	conferences.

He	 contributes	 to	 UXPA	 (User	 Experience	 Professionals	 Association)	 as	 a
member	 and	 IIBA®	 (International	 Institute	 of	 Business	 Analysis)	 as	 a	 local
chapter	 president.	 He	 also	 contributed	 to	 ISTQB®	 (International	 Software
Testing	Board)	as	a	former	international	board	member.



	

Preface

	

Companies	 have	 to	 develop	 innovative	 and	 high-quality	 products	 faster	 than
their	 competitors	 to	 create	 temporary	 monopoly	 periods	 with	 maximum
profitability.	However,	they	usually	have	tight	deadlines	and	limited	budgets	for
new	 product	 development	 projects.	 C-suite	 executives	 and	 managers	 always
want	 to	 get	 quick	 results	 and	 rarely	 accept	 putting	 the	 brakes	 on	 a	 product
launch.

To	 overcome	 this	 challenge,	 high-performing	 companies	 apply	 a	 “lean”
approach	 at	 every	 stage	 of	 their	 product	 development	 life-cycle	 (PDLC):	 -
Enterprise	 Architecture	 Management	 -Strategic	 Analysis	 and	 Product	 Scope
Definition

-Requirements	Gathering

-Requirements	Documentation

-UX	Design	and	Usability

-Technical	Design,	Development,	and	Operations

-Quality	Assurance	and	Testing

-Project	Management

Best	practice	techniques	and	principles	presented	in	this	book	can	be	used	by	a
broad	range	of	practitioners,	including:	-business	analysts

-entrepreneurs	-consultants	-product	managers

-product	owners

-marketing	specialists

-project	managers

-UX	designers



-developers,	and

-QA	teams

in	 development	 of	 any	 kind	 of	 products,	 ranging	 from	mobile	 applications	 to
consumer	electronics	that	contain	software	technology.

The	book	includes	a	case	study	about	a	mobile	application	development	project
to	show	how	to	apply	the	principles	and	techniques	explained	in	each	chapter.	

There	is	a	misperception	that	lean	approach	is	only	applicable	for	start-ups	and
small-scale	 companies	 that	 usually	 don’t	 have	 enough	 technical	 and	 financial
resources	for	product	development.

On	 the	 contrary,	 C-suite	 executives	 and	 managers	 of	 companies	 of	 all	 sizes
should	apply	lean	approach	in	transforming	their	enterprise	operating	models	to:

-foster	innovation,

-achieve	faster	time	to	market,	and

-prevent	waste	and	improve	profitability.



Table	of	Contents

	

	

1.	Lean	Principles	to	Achieve	Innovation	and	Faster	Time	to	Market

2.	Enterprise	Architecture	Management

3.	Strategic	Analysis	and	Product	Scope	Definition

4.	Which	Methodology	is	Best	for	the	Lean	Approach:		Waterfall	or	Agile?

5.	Requirements	Gathering

6.	Requirements	Documentation

7.	UX	Design	and	Usability

8.	Technical	Design	and	DevOps

9.	Quality	Assurance	and	Testing

10.	Project	Management
	



	
	
	
	
	

	
	
	
	
	
	
	

1.	Lean	Principles	to	Achieve	Innovation	and	Faster	Time	to	Market
	

	



Companies	 have	 to	 develop	 innovative	 and	 high-quality	 products	 faster	 than
their	 competitors	 to	 create	 temporary	 monopoly	 periods	 with	 maximum
profitability.	However,	they	usually	have	tight	deadlines	and	limited	budgets	for
new	product	development	projects.

To	 overcome	 this	 challenge,	 high-performance	 companies	 apply	 a	 “lean”
business	analysis,	design,	and	development	approach	 that	has	 its	origins	 in	 the
Toyota	car	production	system.

Lean	 mainly	 focuses	 on	 eliminating	 muda	 (waste)	 throughout	 the	 product
development	 lifecycle	 (PDLC)	 and	 passing	 resource	 savings	 to	 innovative
projects.	

Waste	elimination	can	be	achieved	by	injecting	the	following	lean	principles	into
the	companies’	DNA:

1.	Be	Value	Oriented

-Focus	on	producing	outcomes	(value)	rather	than	outputs	(deliverables).

-Always	prioritize	product	 features;	 focus	on	“must-have”	rather	 than	“nice-to-
have"	ones.

-Eliminate	 the	waste	 of	 low-priority	 product	 features	 that	 are	 not	 essential	 for
customers.

2.	Be	Customer	Centered

-Be	like	the	sun	but	not	the	moon;	illuminate	yourself	with	the	light	of	your	own
customers	instead	of	your	competitors.	Concentrate	on	being	more	responsive	to
the	needs	of	your	target	customers	instead	of	benchmarking	yourself	with	your
competitors.

-Be	 customer	 centric	 rather	 than	 product	 centric.	 Consider	 products	 not	 as	 an
objective	but	as	a	tool	to	meet	your	customers’	needs.

-Develop	products	around	your	customers.	Always	listen	closely	to	the	“voice	of
your	customers”	throughout	PDLC.	Set	up	and	maintain	a	continuous	customer
feedback	loop.



-Ask	 customers	 about	 their	 needs	 but	 not	 their	 proposed	 solutions.	Remember
Henry	Ford’s	famous	quotation:	“If	I	had	asked	people	what	they	wanted,	 they
would	have	said	faster	horses.”

3.	Be	Iterative	

-Start	 your	product	development	 journey	with	 small	 steps.	Think	big,	 but	 start
small.

-Be	patient;	remember	that	Rome	was	not	built	in	a	day.

-Move	 evolutionary	 rather	 than	 revolutionary:	 Use	 prototypes	 to	 gather	 early
customer	feedback.	At	the	initial	iteration,	release	a	core	version	of	the	product
including	 only	 high-priority	 features.	 In	 following	 iterations,	 use	 customer
feedback	from	previous	releases	 to	refine	 the	product	by	adding,	updating,	and
even	dropping	features.	Iterate	until	the	product	satisfies	business	and	customer
needs.

4.	Be	Simplistic

-Remember	that	less	is	much	more	in	the	lean	approach.	Do	not	complicate	it.

-Focus	on	“just	enough”	and	what	is	really	necessary	to	satisfy	customer	needs.

-Appreciate	 downsizing	 the	 product	 by	 removing	 nonessential	 features,	 rather
than	upsizing	it	with	bells	and	whistles.

-In	determining	product	 features,	 think	as	 if	you	are	decorating	a	 small	house.
Don’t	 make	 your	 users	 feel	 claustrophobic	 as	 if	 they’re	 in	 a	 small,	 crowded
space	with	a	lot	of	furniture.

5.	Don’t	Be	Afraid	of	Early	Failure

-Remember	the	famous	quotation	from	American	scientist	and	author	Dr.	James
Jay	Horning:	“Good	judgment	comes	from	experience.	Experience	comes	from
bad	judgment.”

-Be	 adaptive,	 learn	 early	 from	 failures	 in	 initial	 iterations,	 and	 use	 this
experience	for	later	ones.

-Focus	on	kaizen,	which	means	continuous	improvement,	at	all	levels	of	PDLC
by	using	lessons	learned	at	previous	iterations.



		6.	Optimize	the	Work	Flow

-Act	“just	in	time”	throughout	PDLC.	Requirements	analysis	and	design	artifacts
represent	 WIP	 (work	 in	 process)	 inventories	 in	 the	 product	 development
lifecycle.	Create	them	at	the	right	time	and	with	sufficient	detail	to	prevent	WIP-
level	waste.

	



	
	
	
	
	
	
	
	
	
	
	

2.	Enterprise	Architecture	Management



	
According	 to	 the	 lean	 approach,	 every	 single	 project	 in	 a	 company	 should
support	corporate	strategies.	In	other	words,	each	project’s	objectives	(business
requirements)	 should	 be	 aligned	with	 corporate	 strategies.	Otherwise	 company
resources	are	rooted	in	the	wrong	direction,	and	that	results	in	project	portfolio-
level	waste.

To	ensure	strategic	alignment	and	prevent	waste,	requests	from	all	business	units
within	 the	 company	 for	 new	 and	 enhanced	 products	 should	 be	 received,
evaluated,	and	prioritized	by	a	dedicated	group	of	people.

In	 large-scale	 companies	 that	 create	 products	 containing	 software	 technology,
this	dedicated	group	may	be	a	separate	enterprise	architecture	team	that	works	in
coordination	 with	 company	 executives	 to	 understand	 business	 strategies,
	evaluate	business	unit	requests	against	these	strategies	and	steer	technical	teams
in	 building	 products	 that	meet	 today’s	 and	 tomorrow’s	 business	 and	 customer
needs.

Since	 product	 development	 takes	 a	 considerable	 amount	 of	 time,	 enterprise
architects	 should	 guide	 technical	 teams	 in	 creating	 a	 flexible	 technical
architecture	 that	 can	 serve	 both	 today’s	 and	 tomorrow’s	 new	 product
development	 initiatives.	 Otherwise	 technical	 limitations	 become	 a	 bottleneck
rather	than	an	enabler	for	the	company.

The	 enterprise	 architecture	 profession	 requires	 business	 knowledge,	 technical
skills,	 and	 the	 ability	 to	 see	 the	 big	 picture	with	 a	 bird’s-eye	 view.	Hence	 the
most	 suitable	 people	 to	 fill	 enterprise	 architecture	 positions	 are	 experienced
business	 analysts,	 product	 managers,	 and	 project	 managers	 who	 gain	 these
competencies	naturally	 as	part	 of	 their	 profession.	Thus	 in	 small-and	midsized
companies,	project	management	offices	(PMOs),	product	management	teams,	or
a	team	of	experienced	business	analysts	should	be	responsible	for	evaluating	and
prioritizing	 product	 development/enhancement	 requests	 from	 all	 business	 units
and	ensuring	the	alignment	of	business	and	technical	architectures.		

Air	Traffic	Control	Tower

In	our	clients,	we	witness	an	overwhelming	number	of	new	or	enhanced	product
development	 requests	 from	 business	 units.	 Managing	 these	 requests	 is	 like



managing	the	air	traffic	control	tower	at	a	very	busy	airport.

A	huge	number	of	requests	waiting	in	the	demand	management	pipeline	creates
a	high	technical	debt.

Despite	all	their	hard	work,	most	technical	departments	are	blamed	for	not	being
able	 to	meet	 the	 expectations	of	business	units.	Business	units	mostly	 criticize
technical	departments	for	not	delivering	new	or	enhanced	products	fast	enough.

According	to	Einstein’s	relativity	theory,	observations	that	you	make	about	time
differ	from	observations	of	others	who	are	moving	at	different	speeds.	Similarly,
project	durations	are	relative	for	technical	teams	and	business	units	of	the	same
company.	While	six	months	will	be	considered	a	challenging	time	frame	by	most
technical	 teams	 to	 develop	 a	 new	 product,	 it	 will	 be	 considered	 as	 a	 long
duration	by	business	units.

If	 delivered	 late,	 product	 development	 projects	 lose	 their	 importance	 for	 the
business	 due	 to	 rapidly	 changing	market	 conditions	 and	 fierce	 time-to-market
pressures.

If	you	search	for	 the	root	cause	of	 technical	 teams’	 latencies,	you	will	see	 that
they	 can	only	 allocate	 limited	 time	 to	 the	development	 of	 new	products.	They
spend	 the	 majority	 of	 their	 time	 on	 an	 overwhelming	 number	 of
enhancement/modification	requests	for	existing	products	to	"keep	the	lights	on.”

“Keep	the	Lights	On”	Projects

A	high	number	of	 these	 enhancement	 /	modification	 requests	 also	demotivates
business	analysts,	product	managers,	developers,	and	project	managers	because,
instead	 of	 being	 involved	 in	 new	 and	 innovative	 projects,	 they	 have	 to	 spend
their	time	firefighting	existing	products.

If	 the	 additional	 cost	 of	 these	 enhancement	 /	 modification	 requests	 are	 not
tracked	 systematically,	 the	 total	 cost	 of	 ownership	 for	 existing	 products	 will
reach	a	very	high	amount.	Usually	this	total	amount	outweighs	the	replacement
of	 the	 existing	 product	 with	 a	 new	 one	 and	 creates	 product	 enhancement	 /
modification-level	waste.

Sometimes	 enhancement/modification	 requests	 are	 classified	 under	 the	 same
category	with	maintenance	requests.	This	is	also	an	inappropriate	approach	since
maintenance	is	a	different	category,	and	its	aim	is	to	ensure	continuous	operation



of	 a	 product	 rather	 than	 to	 enhance	 its	 attributes.	 Each	 product	 should	 have	 a
separate	maintenance	and	enhancement	/	modification	track	to	identify	the	best
time	to	totally	replace	it.

The	status	of	these	enhancement	/	modification	requests	should	be	continuously
reviewed.	Some	of	the	requests	waiting	in	the	pipeline	may	become	obsolete	due
to	 changing	 business	 conditions.	 These	 obsolete	 requests	 should	 be	 identified
and	 eliminated	 to	 optimize	 the	 utilization	 of	 technical	 resources	 and	 prevent
waste.

Case	Study:	Mobile	Application	Development	Project

A	 local	 CEC	 (consumer	 electronics	 company)	 outsourced	 its	 requirements
gathering,	documentation,	and	analysis	process	to	BA-Works.

Company	Overview

The	CEC	sold	TV	sets,	 speakers,	home	cinema	systems,	and	DVD	players	via
independent	dealer	stores.	These	dealer	stores	were	also	responsible	for	product
delivery	and	repair.

The	 CEC	 worked	 with	 an	 outsourced	 call	 center	 company	 that	 was	 only
responsible	for	customer	service.	It	had	no	direct	sales	to	customers.	

The	CEC	managed	its	procurement,	inventory,	accounting,	and	sales	operations
on	an	ERP	system	and	marketing	operations	on	a	CRM	system.

Business	Need

The	 CEC’s	 website	 was	 only	 being	 used	 to	 present	 product	 and	 campaign
information.	 There	 were	 no	 sales	 on	 the	 web	 channel.	 At	 that	 time	 the	 CEC
didn’t	have	a	mobile	application.

For	 the	 last	 two	 years,	 discounted	 prices	 on	 e-commerce	 websites	 had	 been
driving	the	CEC’s	customers	to	the	competition.

To	overcome	this	situation,	the	CMO	(chief	marketing	officer)	of	the	CEC	was
considering	 creating	 the	 company’s	 own	 online	 sales	 channels.	 The	 CMO
planned	 to	 initiate	 the	 online	 strategy	with	 a	mobile	 application.	 At	 that	 time
other	 consumer	 electronics	 companies	 didn’t	 have	mobile	 applications	 for	 this



local	market.	The	CMO	wanted	to	make	the	CEC	the	first	consumer	electronics
company	 that	 used	 mobile	 as	 a	 sales	 channel.	 He	 discussed	 the	 mobile
application	idea	with	his	team	members	and	asked	them	to	move	forward.

The	 company’s	 marketing	 business	 unit	 entered	 this	 request	 on	 the	 CEC’s
demand	management	system	as	an	urgent,	high-priority	demand.	They	noted	that
they	wanted	to	release	a	mobile	sales	channel	earlier	than	competitors,	and	thus
the	project	had	to	be	completed	within	two	months	at	the	latest.

On	 the	 following	pages,	 the	 lean	 approach,	 as	 applied	 to	 the	development	 and
release	 of	 the	CEC’s	mobile	 application,	 is	 explained	 in	 detail	 to	 help	 readers
better	understand	the	relevant	content	in	each	chapter	of	the	book.

	
	
	
	
	
	
	
	
	

	



	
	
	
	
	

	
	
	
	
	
	
	

	
3.	Strategic	Analysis	and	Product	Scope	Definition



	
The	lean	approach	brings	a	purpose-led,	value-oriented	mindset	that	necessitates
a	shared	vision	among	all	project	stakeholders.

Business	 analysts	 should	 start	 every	 project	 by	 defining	 the	 business
requirements	 that	 explain	 the	 vision	 and	 value	 proposition	 of	 the	 product.
Business	 requirements	 should	 clearly	 answer	why	 customers	need	 that	 specific
product.

Business	 analysts	 should	 interview	 target	 customers	 at	 the	 beginning	 of	 the
project	 and	 validate	 that	 the	 defined	 business	 requirements	 can	 resolve
articulated	customer	needs.			

Clear	definition	of	business	 requirements	at	 the	beginning	of	 the	project	 steers
every	stakeholder	in	the	same	strategic	direction.	This	mitigates	the	risk	of	scope
creep	 due	 to	 potential	 change	 requests	 (CRs),	 which	 result	 in	 waste	 due	 to
rework.

Depending	on	 the	 size	 of	 the	 project,	 business	 requirements	 can	 be	 defined	 in
different	types	of	product	scope	documents:

1.	Business-Case	Document

In	large-scale	projects	(usually	called	Type-A	projects)	that	have	enterprise-level
impact,	 business	 requirements	 should	 be	 documented	 on	 a	 business-case
document.	The	business-case	document	should	include:	-Business	requirements:
to	clarify	why	the	new	product	is	needed

-Scope:	 to	define	and	prioritize	product	 features	 that	will	 satisfy	 specific	goals
and	problems	of	target	customers

-Context:	to	analyze	which	other	products	and	systems	the	product	will	work	in
integration	with

-Cost	vs.	benefit	analysis:	to	better	understand	the	feasibility	of	the	new	product.
The	feasibility	of	a	new	product	should	be	analyzed	based	on	the	defined	scope,
because	 a	 feasible	 product	 may	 become	 infeasible	 depending	 on	 the	 selected
features.

-Risks:	to	identify	and	mitigate	possible	negative	consequences	of	releasing	the
new	product.



2.	Vision	and	Scope	Document

For	medium-and	small-scale	projects	(usually	called	Type-B	projects),	business
requirements	 should	 be	 documented	 on	 a	 vision	 and	 scope	 document.	 This
document	should	include	features	of	the	proposed	product	that	will	be	delivered
in	 each	 release	 and	 provide	 context	 information	 that	 shows	 the	 high-level
integration	of	the	product	with	other	products	and	systems.

3.	SOW	(Statement	of	Work)	Document

For	 enhancement/modification	 requests	 (usually	 called	 Type-C	 projects)	 on
existing	 products	 that	 usually	 last	 less	 than	 one	month,	 there	 is	 no	 need	 for	 a
business-case	or	vision	and	scope	document.	A	clear	explanation	of	the	business
need	in	a	one-page	SOW	document	is	just	enough	to	describe	the	scope	of	work.
These	 requests	 are	better	 fulfilled	by	 a	more	 agile	 approach	without	 too	much
documentation.

Rippling	Effect

On	 any	 scope	 document,	 business	 requirements	 should	 be	 defined	 in	 specific,
purpose-led,	achievable,	and	crystal	clear	statements.

A	 clear	 definition	 of	 business	 requirements	 at	 the	 start	 of	 the	 project	 is	 very
important,	 because	 at	 later	 stages	 of	 the	 project,	 the	 functional,	 nonfunctional,
and	 technical	 requirements,	 and	 the	 business	 rules	 of	 the	 product	 should	 be
defined	consistent	with	the	business	requirements.	Wrong	definition	of	business
requirements	 will	 have	 an	 adverse	 rippling	 effect	 on	 all	 of	 these	 low-level
requirements	and	business	rules.	This	will	result	in	waste	due	to	a	high	number
of	CRs	and	defects.

Paradox	of	Choice

Having	many	features	is	not	an	indicator	of	elegance	or	quality	in	lean	product
development.

On	 the	 contrary,	 as	 psychologist	 Barry	 Schwartz	 describes	 it	 in	 his	 book
Paradox	of	Choice:	Why	More	Is	Less,	choice	overload	creates	decision-making
paralysis,	anxiety,	and	stress	rather	than	bringing	more	satisfaction	to	customers.



A	 lean	 approach,	 delivering	 “maximum	value”	with	 “just	 enough”	 features,	 is
the	 ultimate	 goal.	 Having	 a	 formal	 prioritization	 process	 is	 one	 of	 the
preconditions	for	applying	this	approach.

Without	a	prioritization	process,	business	units	feel	free	 to	request	any	product
feature	 as	 if	 the	 project	 has	 unlimited	 resources.	 The	 features	 requested	 by
business	 units	 should	 be	 prioritized	 according	 to	 two	 main	 criteria:	 -business
value	and,

-implementation	difficulty.

Business	value	depends	on	 the	alignment	of	a	 feature	 to	business	 requirements
and	customer	needs.	The	items	with	high	business	value	and	low	implementation
difficulty	 should	 be	 rated	 as	 high	 priority,	 while	 the	 ones	 with	 low	 business
value	and	high	implementation	difficulty	should	be	rated	as	low	priority.

The	 rest	 of	 the	 features	 should	 be	 labeled	 as	 medium	 priority	 and	 prioritized
according	 to	 their	 expected	 frequency	of	 use.	Medium	priority	 features	 can	be
relabeled	 as	 high	 priority	 if	 they	 have	 high	 frequency	 of	 use.	Otherwise,	 they
move	to	the	low	priority	quadrant.

Time	to	Market



When	time	to	market	is	critical	for	the	product,	the	project	should	be	classified
as	 a	 “fast-track”	 one.	 In	 these	 time-sensitive,	 fast-track	 projects,	 business
analysts	and	managers	should	convince	business	units	 to	focus	on	“must-have”
features	 rather	 than	 “nice-to-have”	 features	 and	 try	 to	 generate	 “fair-value”
outcomes	in	an	iterative	way.

80/20	Rule

Regardless	 of	 time-to-market	 constraints,	 business	 units	 are	 always	 eager	 to
expand	the	scope	of	products	by	adding	nice-to-have	features.	However,	 in	our
experience	the	majority	of	users	only	use	a	minority	of	the	product	features.	This
is	big	source	of	scope-level	waste.

When	 business	 units	 insist	 on	 nice-to-have,	 low-priority	 features,	 business
analysts	 and	 project	 managers	 should	 remind	 them	 of	 the	 famous	 phrase	 in
Voltaire’s	 poem	 “La	 Begueule”:	 “perfect	 is	 the	 enemy	 of	 good.”	 The	 phrase
suggests	that	insisting	on	perfection	often	results	in	no	improvement	at	all.

Benchmarking	and	Reverse	Engineering

Business	 units	 also	 have	 a	 tendency	 to	 enlarge	 the	 product	 scope	 by
benchmarking	competitors’	products	and	requesting	all	of	their	features.

Although	 benchmarking	 competitors’	 products	 is	 a	 fast	 way	 of	 determining
product	 features,	 it	 is	 not	 appreciated	 at	 every	 phase	 of	 lean	 product
development.		

In	a	lean	approach,	project	stakeholders	should	be	looking	at	“what	problems	of
my	target	customers	should	my	product	solve”	instead	of	“what	my	competitors
are	doing.”

After	product	features	are	defined,	benchmarking	can	then	be	used	to	fasten	later
phases	of	product	development	by	exploring	how	competitors	implement	similar
features	without	reinventing	the	wheel.

It	should	also	be	remembered	that	even	the	best	competitors	don’t	always	do	the
right	 things.	 Thus	 benchmarking	 can	 also	 result	 in	 copying	 competitors’
mistakes.	 In	 one	 of	 BA-Works	 projects,	 our	 team	 was	 responsible	 for
benchmarking	the	customer	interaction	channels	of	a	global	hotel	chain	with	its
competitors.	During	the	study	our	team	noticed	that	the	majority	of	competitors



had	 common	 right	 things	 and	 common	 wrong	 things	 on	 their	 customer-
interaction	 channels	 (web,	 call	 center,	 mobile,	 and	 social	 media).	 This	 was	 a
result	of	a	copy-and-paste	approach.	Although	copying	competitors	is	a	fast	way,
companies	 should	 first	 focus	 on	 finding	 ways	 to	 differentiate	 themselves	 in
providing	the	best	customer	experience.

Core	Version	of	a	Product

The	lean	approach	suggests	the	following	flow	in	PDLC:

-Deploy	 the	 first	 release	with	 a	 core	 version	 of	 the	 product,	 and	 get	 customer
feedback	as	early	as	possible.

-At	 each	 following	 iteration,	 use	 previous	 customer	 feedback	 to	 refine	 the
product	by	adding,	updating,	and	even	dropping	features.

-Iterate	until	the	product	satisfies	business	requirements	and	customer	needs.

The	core	version	of	a	product	 should	have	a	minimum	set	of	 features	 that	 can
solve	 the	 main	 problem	 of	 target	 customers.	 Popular	 terms	 such	 as	 MVP
(minimum	viable	product)	and	MMF	(minimum	marketable	features)	are	used	to
define	this	core	version	of	the	product.

For	instance,	the	core	version	of	a	golf	car	should	at	least	have	an	engine,	tires,
steering	wheel,	 brakes,	 seats,	 and	 a	utility	box.	At	 the	 first	 release,	 even	 these
limited	core	features	may	fulfill	 the	basic	customer	need	of	 transportation	on	a
new	 golf	 field.	 The	 decision	 to	 add	 which	 nice-to-have	 features,	 such	 as	 cup
holders,	 ice	 boxes,	 heated	windshields,	 and	 sound	 systems,	 can	 be	made	 later
according	to	customer	feedback	on	the	core	version	of	the	car.

High-priority	 features	on	 scope	documents	 are	 the	best	 candidates	 for	 the	core
version	of	 the	product.	Medium-and	low-priority	features	can	be	added	to	 later
releases	according	to	customer	feedback	on	the	core	version.

The	priority	of	features	may	change	based	on	customer	feedback.	A	feature	that
was	 initially	 considered	 low-priority	 may	 later	 become	 a	 high-priority	 one.
Similarly,	a	product	feature	that	was	initially	considered	a	high-priority	one	may
become	obsolete	if	it	doesn’t	deliver	the	desired	value	to	customers.

For	the	CEC	mobile	application	project,	BA-Works’	business	analysts	assessed



the	 request	 from	 the	 marketing	 business	 unit.	 They	 marked	 this	 request	 as	 a
Type-A	 project	 that	 had	 enterprise-level	 impact	 on	 sales	 channels.	 They	were
shocked	when	they	saw	that	 the	marketing	business	unit	planned	to	release	 the
product	only	two	months	later.

Since	it	was	a	Type-A	project,	the	analysts	worked	with	the	marketing	business
unit	 to	prepare	a	business-case.	The	details	of	business-case	document	were	as
follows:





Context

Our	business	analysts	analyzed	which	existing	systems	such	as:	-ERP
(Enterprise	Resource	Planning),	-CRM	(Customer	Relationship	Management),	-
CMS	(Content	Management	System)	-Dealer	Management	System	the	mobile
application	needed	to	be	integrated	with	to	deliver	the	proposed	features.	

Cost	vs.	Benefit	Analysis

	

According	to	the	cost	benefit	analysis,	the	mobile	application	project	had	a
positive	NPV	(net	present	value).	It	would	payback	in	less	than	three	years.	This
payback	period	was	acceptable	for	the	marketing	business	unit.



The	project	team	also	assessed	the	risks	and	defined	the	mitigation	strategy.

	





	

	
	
	
	
	
	
	

	
	
	

4.	Which	Methodology	is	Best	for	the	Lean	Approach:		Waterfall	or	Agile?
	

	

	



	
At	 the	 strategic	 level,	 successful	 enterprise	 architecture	 and	 demand
management	 prevent	portfolio-level	waste	 by	 ensuring	 that	 company	 resources
are	 utilized	 for	 the	 right	 product	 development	 projects	 that	 support	 company
strategies.

To	prevent	waste	at	 tactical	and	operational	 levels,	 resource	utilization	within
the	 projects	 should	 be	 also	 optimized.	 This	 can	 be	 achieved	 by	 applying	 an
appropriate	methodology	in	every	product	development	project.

Law	of	Entropy

	
As	 physics	 theory,	 everything	 in	 the	 universe	 has	 a	 bias	 to	 pass	 from	 a	well-
ordered	state	to	a	disordered	state	due	to	the	law	of	entropy.	This	is	also	valid	for
product	 development	 projects.	 To	 prevent	 disorder	 and	 chaos,	 project	 teams
should	apply	a	methodology.

However,	 some	 managers	 fall	 into	 the	 trap	 of	 overstandardization	 and	 try	 to
apply	the	same	standard	methodology	to	all	of	their	projects.	They	even	assign
showy	 names	 such	 as	 Xagile,	 Waterscrum,	 and	 Scrumfall	 to	 these
methodologies.

Since	 every	 project	 has	 different	 dynamics,	 it	 is	 better	 to	 apply	 a	 customized
methodology	 that	 fits	 the	 specific	 project’s	 needs	 instead	 of	 a	 one-size-fits-all
approach.	 At	 a	 majority	 of	 companies,	 the	 most	 popular	 methodologies	 are
waterfall	and	agile.

Waterfall	or	Agile?

According	to	the	dialectical	method	in	philosophy,	“within	themselves	all	things
contain	 internal	dialectical	contradictions	 that	are	 the	primary	cause	of	motion,
change,	 and	 development	 in	 the	 world.”	 Similarly,	 the	 internal	 contradictions
and	drawbacks	of	the	waterfall	methodology	have	been	the	driving	force	behind
agile	adoption.

The	lean	approach	is	usually	associated	with	agile	methodologies	mainly	due	to
its	three	manifesto	statements:



1.	“Working	software	over	comprehensive	documentation”

In	 scrum,	 a	 popular	 agile	 framework,	 requirements	 are	 defined	 as	 short	 and
simple	 user	 stories	 (as	 a	 “role,”	 I	 want	 “goal”)	 on	 the	 product	 backlog	 by	 a
business	 unit	 representative	 (the	 product	 owner).	 This	 minimizes	 the	 level	 of
documentation	and	bureaucracy	witnessed	in	waterfall	projects.

2.	“Customer	collaboration	over	contract	negotiation”

In	agile	projects	the	product	owner	and	the	development	team	work	at	the	same
location,	which	creates	a	more	collaborative	product	development	environment
compared	to	waterfall	projects.

3-	“Responding	to	change	over	following	a	plan”:

In	 waterfall	 projects,	 development	 waits	 for	 the	 completion	 of	 analysis	 and
design	phases.	Thus,	in	a	one-year	project,	it	takes	at	least	five	to	six	months	on
average	to	get	to	the	working	parts	of	a	product.	This	latency	in	delivery	creates
anxiety	for	business	units	who	are	impatient	to	see	“quick”	results.	On	the	other
hand,	the	agile	team	releases	a	working	part	of	the	product	in	a	series	of	two	to
three	weeklong	“sprints”	under	the	coordination	of	a	“scrum	master.”	The	team
velocity	 is	 adjusted	 iteratively	 by	 analyzing	 burn-down	 charts	 of	 previous
sprints.

Agile	projects’	fast	delivery	of	working	products,	starting	from	the	first	iteration,
brings	confidence	to	all	stakeholders	and	enables	the	gathering	of	early	customer
feedback.

At	dynamic	business	environments	in	which	change	is	not	the	exception	but	the
norm,	 applying	 agile	 methodology	 is	 more	 meaningful,	 because	 waterfall	 has
low	 flexibility	 for	 changes	 on	 requirements.	 Any	 possible	 change	 to	 the
requirements	has	an	impact	on	the	overall	analysis	and	design	artifacts.	In	agile
environments	 a	 change	 to	 the	 requirements	 has	 no	 effect	 on	 the	 parts	 of	 the
product	that	have	not	been	analyzed	or	designed	yet.

The	 product	 owner	 and	 the	 project	 team	 should	 conduct	 regular	 “grooming
sessions”	 in	 agile	 projects.	 The	 aim	 of	 these	 sessions	 is	 to	 discuss	 customer
feedback	from	previous	sprints	and	update	the	product	backlog	by	removing	user
stories	 that	 no	 longer	 have	 a	 value	 proposition.	 This	 also	makes	 agile	 a	more
effective	methodology	in	dynamic	business	environments.



However,	 applying	agile	methodology	 to	every	kind	of	project	 is	not	a	correct
strategy.	It	is	still	more	appropriate	to	proceed	with	waterfall	when:

-the	product	has	intensive	integration	among	its	components;

-the	colocation	of	project	team	members	is	not	feasible;

-it	 is	not	possible	 for	 the	 team	members	 to	work	only	 for	 a	 single	project	 at	 a
time;	and

-there	is	high	employee	turnover,	which	runs	the	risk	of	losing	project	knowhow
in	case	project	team	members	leave	the	company.

Agile	is	iterative	by	nature.	Although	waterfall	is	a	sequential	methodology,	it	is
still	possible	to	make	it	more	iterative	by

-increasing	the	number	of	releases,

-benefiting	 from	 prototyping	 and	 review	meetings	 to	 get	 early	 feedback	 from
customers,

-minimizing	the	detail	 level	of	requirement	documents	by	more	effective	usage
of	diagrams,	and

-decomposing	 requirements	 into	 right	 granularity	 to	 improve	 understandability
and	traceability.

Quantum	vs.	Deterministic	Models

Einstein’s	 and	 Heisenberg’s	 formulations	 are	 the	 most	 dominant	 models	 for
explaining	 the	 laws	 of	 physics.	 Einstein	 did	 not	 believe	 in	 randomness
(indeterminism),	and	he	summarized	this	with	his	famous	quotation,	“As	I	have
said	so	many	times,	God	doesn’t	play	dice	with	the	world.”	On	the	other	hand,
Heisenberg’s	quantum	model	is	based	on	the	uncertainty	principle,	which	is	also
called	the	“principle	of	indeterminacy.”

Although	 these	 two	 theories	 are	 completely	 different,	 a	 physicist	 can	 still	 use
both	 to	make	 accurate	 calculations	 for	 different	 cases.	While	 they	mostly	 use
Einstein’s	 formulations	 to	model	atomic	particles	moving	at	velocities	close	 to
the	 speed	 of	 light,	 they	 use	 quantum	 formulations	 to	 model	 the	 behavior	 of
subatomic	particles.



We	 can	 associate	 waterfall	 methodology	 with	 Einstein’s	 deterministic	 models
and	use	it	for	projects	that	require	big	design	upfront	in	relatively	static	business
environments.	 On	 the	 other	 side,	 we	 can	 associate	 agile	 methodology	 with
quantum	 theory’s	 indeterminism	 due	 to	 its	 success	 in	 dynamic	 business
environments	with	random	business	conditions.

Managers	should	not	fall	into	an	“either/or	fallacy”	by	feeling	they	have	to	select
either	waterfall	 or	 agile.	 For	 some	projects,	 including	 both	 static	 and	 dynamic
conditions,	even	a	hybrid	strategy	can	be	formulated	that	applies	both	waterfall
and	 agile	methodology	 for	 different	 phases	within	 the	 same	 project.	Waterfall
can	 be	 applied	 at	 the	 initial	 phase	 of	 the	 project	 to	 release	 high-priority,	 core
features	 of	 a	 product	 that	 has	 a	 complex	 architecture	 of	 many	 integrated
components,	 and	 agile	 methodology	 can	 be	 applied	 in	 later	 phases	 to	 release
remaining	medium-and	low-priority	features.

For	 the	 CEC	 mobile	 application	 project,	 our	 team	 applied	 a	 similar	 hybrid
methodology.	Waterfall	was	applied	at	the	first	phase	of	the	project,	which	lasted
two	 months.	 At	 this	 phase	 only	 high-priority	 features	 were	 developed	 and
released	on	a	core	version	of	the	mobile	application.



	



The	first	phase	of	the	project	was	delivered	on	time,	within	two	months,	and	the
following	observations	were	made	regarding	the	initial	release	of	the	product:

-A	mobile	sales	channel	was	launched	before	competitors.

-The	number	of	people	who	downloaded	the	CEC	mobile	application	was	more
than	expected.

-The	number	of	 customers	who	used	 the	mobile	 application	 to	view	and	order
CEC	products	was	more	than	projections	on	the	business-case	document.

This	way,	the	CEC	marketing	business	unit	verified	that	the	mobile	application
was	a	good	idea.	Even	with	a	limited	number	of	features,	the	product	generated
high	value	for	CEC	customers	and	satisfied	business	requirements.

Based	on	these	initial	results,	the	marketing	business	unit	decided	to	initiate	the
second	 phase	 of	 the	 project	 to	 implement	 medium-priority	 features	 that	 were
predefined	on	the	business-case	document.

	



In	 the	 second	 phase,	 the	 project	 team	 applied	 agile	methodology.	 The	 project
manager	 started	 to	play	 the	 scrum	master	 role.	Since	 the	CEC	marketing	 team
could	not	allocate	a	senior	representative,	the	most	experienced	business	analyst
of	 the	 team	 played	 the	 role	 of	 product	 owner.	 The	 other	 business	 analysts
became	part	of	the	agile	team	together	with	developers	and	software	testers.

The	 medium-priority	 features	 of	 the	 mobile	 application	 were	 developed	 and
released	within	two	sprints,	each	of	which	lasted	three	weeks.

	



After	 analyzing	 the	 customer	 feedback	 and	 mobile	 application	 usage	 logs	 of
sprints	one	and	two,	the	marketing	business	unit	observed	that:

-Customers	 definitely	 checked	 other	 customers’	 ratings	 and	 reviews	 before
buying	a	product.	This	new	feature	was	also	very	useful	for	listening	to	the	voice
of	the	customer,	which	was	not	possible	to	get	from	the	dealer	channel.

-Instead	 of	 contacting	 the	 call	 center,	 CEC	 customers	 were	 using	 the	 mobile
application	 to	 track	 their	 orders.	 This	 resulted	 in	 extra	 savings,	 thanks	 to	 the
reduction	in	outsourced	call	center	costs.

CMO	was	happy	to	see	that	newly	added	features	paid	back	very	quickly.	After
analyzing	 usage	 logs	 and	 customer	 journey	 mapping	 studies,	 the	 marketing
business	 unit	 decided	 to	 add	 some	 additional	 features	 to	 further	 increase	 the
mobile	application’s	utilization	rate.



These	new	features	were	also	implemented	with	agile	methodology	in	two	more
sprints.

	



After	 analyzing	 the	 customer	 feedback	 and	 mobile	 application	 usage	 logs	 of
sprints	three	and	four,	the	marketing	business	unit	observed	that:



-The	product	feature	that	sent	coupon	codes	when	customers	connected	to	a	CEC
product	via	 the	CEC	mobile	 application	became	very	popular.	Used	by	a	high
number	 of	 customers,	 it	 positively	 impacted	 cross-sell	 opportunities	 and
customer	loyalty.

-Customers	were	not	as	responsive	as	expected	to	the	contextual	offers	sent	via
the	mobile	 application.	 This	was	 a	 disappointment	 for	 the	marketing	 business
unit.	 The	 business	 unit	 decided	 to	 drop	 this	 feature,	 which	 was	 not	 adding
remarkable	value.

-The	marketing	business	unit	also	noticed	 that	 some	customers	were	 rating	 the
dealer	service	quality	performance	very	low,	and	this	was	negatively	impacting
other	 customers’	 buying	 decision.	 The	 team	 decided	 to	 fix	 this	 problem	 as
follows:	Customers	would	continue	to	rate	dealer	service	quality	via	the	mobile
application,	but	the	customer’s	rating	would	not	be	visible	to	other	customers.	It
would	only	be	visible	to	the	CEC	dealer	management	team.



	
	
	
	
	
	
	
	
	
	
	

5.	Requirements	Gathering



	
User	 requirements,	 functional	 requirements,	 nonfunctional	 requirements,	 and
business	 rules	 of	 the	 product	 should	 be	 defined	 consistently	 with	 business
requirements	 to	 keep	 the	 project	 on	 track	 and	 ensure	 the	 strategic,	 user,	 and
technical	fitness	of	the	product.

-User	requirements:	what	customer	needs/goals	the	product	should	meet

-Functional	requirements:	what	functionality	the	product	should	have	in	order	to
meet	user	requirements

-Nonfunctional	 requirements:	how	 the	product	 should	work	 in	 terms	of	quality
attributes,	such	as	usability,	performance,	privacy,	and	security

-Business	rules:	mainly	the	conditions,	constraints,	and	formulas	that	determine
how	requirements	will	be	handled	by	the	user	and	the	product

If	these	user,	functional	and	nonfunctional	requirements,	and	business	rules	are
not	consistent	with	business	requirements,	then	project	outcomes	will	not	deliver
the	 desired	 value	 and	 fulfill	 customer	 needs.	 To	 mitigate	 this	 risk,	 business
analysts	 should	 give	 highest	 priority	 to	 translating	 business	 needs	 into	 correct
user	 requirements	 during	 requirements-gathering	meetings.	 They	 should	 focus
on	 resolving	conflicts	 about	 these	 requirements	before	discussing	 the	 technical
aspects	of	 the	product.	They	should	always	keep	 in	mind	 that	 “doing	 the	 right
thing	is	always	more	important	than	doing	it	right.”

Business	 analysts	 should	 consider	 conflicts	 among	 project	 stakeholders
positively	 during	 the	 requirements-gathering	 stage.	 If	 these	 conflicts	 are	 not
discussed	and	resolved	at	this	early	stage	of	the	project,	they	will	later	appear	as
high-cost	CRs	(change	requests)	at	the	development	and	testing	phases.	CRs	are
the	main	source	of	waste	at	PDLC	because	they

-can’t	be	planned,

-result	in	scope	creep,

-cause	analysis	paralysis,

-generate	hidden	costs,

-are	mostly	urgent,



-have	both	direct	and	indirect	impacts	on	various	parts	of	the	product,	and

-may	bring	a	regression-testing	burden.

In	the	lean	approach,	business	analysts	should	be	aware	of	factors	that	result	in
CRs	 and	 try	 to	 prevent	 them.	 The	main	 reason	 for	 CRs	 is	 the	 “problems	 and
deficiencies	 in	 requirements-gathering,	 documentation,	 and	 management
process.”

These	 kinds	 of	 CRs	 should	 be	 prevented	 in	 a	 proactive	 way	 by	 applying	 the
following	 best	 practices	 throughout	 the	 requirements-gathering	 phase	 of	 a
product	development	project:

-Realize	that	innovation	cannot	be	achieved	at	the	technical	level.	Innovation	is	a
matter	of	formulating	solutions	that	best	meet	user	needs.

-During	 requirements-gathering	meetings,	 be	 customer	 centric	 and	 ask,	 “What
are	 customers’	 needs	 and	 how	 will	 the	 new	 product	 meet	 them?”	 instead	 of
asking,	“What	should	be	the	technical	features	of	the	new	product?”

-Be	 open-minded,	 find	 alternative	 solution	 options,	 and	 prevent	 shallow
“either/or”	discussions	about	product	features.

-Balance	 the	 level	 of	 creative	 vs.	 critical	 thinking	 at	 requirement-gathering
meetings.	At	 the	beginning	of	 the	project,	be	as	creative	as	possible.	But	when
you	 start	 detailed	 requirement	 analysis,	 employ	 critical	 thinking.	 Critical
thinking	 means	 asking	 the	 right,	 to-the-point	 questions	 and	 verifying	 them
before	assuming	that	they	are	correct.

-At	the	meetings,	get	ready	to	say	no	to	even	good	ideas	from	the	business	units
if	 these	 ideas	 are	 not	 in	 alignment	with	 business	 and	 user	 requirements	 of	 the
product.

-Although	 business	 analysts	 and	 project	 managers	 may	 have	 enough	 level	 of
business	 and	 technical	 knowledge,	 technical	 teams	 should	 still	 be	 invited	 to
requirements-gathering	 meetings	 to	 better	 evaluate	 the	 technical	 feasibility	 of
requirements.

-Don’t	try	to	find	the	answers	to	why	(we	need	the	product),	what	(the	product
does),	 how	 (the	 product	 does),	 and	 technically	 how	 (the	 product	 works)
questions	during	one	single	meeting.	For	 large-scale	projects,	 conduct	 separate



sessions	 for	 interviews,	 focus	 groups,	 and	 workshops	 if	 your	 project	 is	 not	 a
time-sensitive,	fast-track	one.

Go	to	the	Gemba	

-Don’t	 listen	 to	 the	 voice	 of	 the	 customers	 only	 from	 product	 owners	 and
business	unit	representatives.	Elicitation	techniques,	such	as	shadowing,	should
be	used	to	observe	customers	while	using	the	products	or	their	prototypes.	In	the
lean	approach,	this	is	described	as	“go	to	the	gemba.”

Yes-Men	vs.	No-Men

-At	 requirements-gathering	meetings,	 get	 ready	 to	deal	 both	with	yes-men	and
no-men	 from	business	 units.	Yes-men	 are	more	 dangerous	 than	 no-men.	They
are	 silent	 and	 friendly	 during	 requirements-gathering	 meetings	 but	 become
aggressive	and	extremely	demanding	later	at	user	acceptance	tests.	Although	no-
men	are	usually	regarded	as	troublemakers,	they	are	more	helpful	in	identifying
and	 resolving	 conflicts	 at	 the	 early	 stages	 of	 the	 project.	 Resolution	 of	 these
early	conflicts	prevents	waste	due	to	costly	change	requests	at	later	stages	of	the
product	development	project.

Perfectionists	vs.	Overlookers

-In	 the	 lean	 approach,	 requirements	 gathered	 from	 both	 perfectionist	 and
overlooking	people	should	be	analyzed	carefully.	Perfectionists	usually	focus	on
details	 of	 low-priority	 product	 features.	 On	 the	 other	 side,	 overlookers	 may
mislead	the	project	team	by	even	undermining	high-priority	product	features.

A	Picture	Is	Worth	a	Thousand	Words

-Benefit	 from	 prototyping	 during	 requirements-gathering	 meetings	 to	 help
participants	visualize	the	requirements	in	their	minds.

Quantum	Observer	Effect

-The	 way	 of	 asking	 questions	 in	 requirements-gathering	 meetings	 is	 also
important.	The	observer	effect	 in	quantum	mechanics	states	 that	“by	 the	act	of
watching,	 the	 observer	 affects	 the	 observed	 reality.”	 Similarly,	 during
requirements-gathering	meetings,	asking	questions	 in	a	biased	way	 impacts	 the



objectivity	of	answers	from	participants.

-At	 requirements-gathering	 meetings,	 giving	 the	 right	 answers	 to	 wrong
questions	 is	more	dangerous	 than	giving	wrong	answers	 to	 the	 right	questions.
Wrong	 questions	mislead	 the	 team,	 generate	 conflicts,	waste	 project	 time,	 and
result	in	failure.	Business	analysts	should	prepare	simple,	objective,	and	to-the-
point	questions	for	these	meetings.

Conflict	Is	a	Norm	but	Not	an	Exception

-At	 requirements-gathering	 meetings,	 don’t	 be	 afraid	 of	 conflicts	 and
negotiations	among	participants.	The	more	conflicts	resolved	at	this	early	stage
means	fewer	CRs	during	the	project.

-Try	 to	 clarify	 all	 of	 the	 issues	 during	 requirements-gathering	meetings.	Don’t
postpone	 them	 by	 entering	 into	 an	 issue	 database.	 Issue	 management	 means
postponing	problems.

-Don’t	feel	desperate	during	requirements-gathering	meetings	when	the	number
of	 conflicts	 increases	 and	 the	 problems	 get	 complicated.	At	 those	 times,	 think
that	 the	 project	 is	 not	 rocket	 science	 like	 at	 NASA	 or	 CERN,	 and	 do	 not
exaggerate	 these	situations.	 Instead	of	giving	up	early,	 remember	 the	advice	of
Henry	Ford:	“There	are	no	big	problems;	there	are	just	a	lot	of	little	problems.”

-Apply	 the	 “functional	 decomposition”	 technique	 to	 divide	 problems	 into
smaller	parts	and	resolve	them	one	by	one.	When	needed,	benefit	from	the	“five
whys”	 technique,	 which	 is	 iteratively	 asking	 questions	 as	 a	 basis	 of	 the	 next
question	until	finding	the	root	cause	of	a	particular	problem.

Butterfly	Effect	in	Chaos	Theory

-When	a	change	request	is	received,	analyze	its	forward	and	backward	impact	on
all	levels	of	requirements.	According	to	the	Butterfly	Effect	in	Chaos	Theory,	a
small	 change	 at	 one	 place	 in	 a	 complex	 system	 can	 result	 in	 large	 effects
elsewhere.	The	 formation	details	of	 a	hurricane	 can	be	 influenced	even	by	 the
flapping	of	a	butterfly’s	wings	at	a	distinct	location	several	weeks	earlier.	This	is
also	valid	for	CRs.	A	CR	that	is	considered	to	be	minor	may	result	in	a	butterfly
effect	on	lots	of	other	product	components	and	require	a	big	effort.



	

	
	
	
	
	

	
	
	
	
	

6.	Requirements	Documentation



	
Features	 that	 customers	do	not	 use	 after	 the	 release	 are	 a	 big	 source	of	waste.
The	main	 reason	 for	 this	problem	 is	 the	 lack	of	 customer	centricity	during	 the
traditional	product-centric	analysis	and	design	approach.

Defining	the	details	of	user	requirements	by	employing	the	“use	case”	technique
in	waterfall	methodology	 and	 the	 “user	 story”	 technique	 in	 agile	methodology
helps	project	teams	be	more	customer	centric.

Use	Case	Technique:

In	 waterfall	 methodology’s	 use	 case–driven	 analysis,	 user	 requirements	 are
defined	in	three	steps:

1.	Who	are	the	actors?

Target	actors	are	defined.

2.	What	are	the	goals	(use	cases)	of	actors?

User	 requirements	 (use	cases)	 correspond	 to	 the	goals	of	 the	actors.	Use	cases
are	shown	on	a	use-case	diagram,	which	also	illustrates	the	high-level	scope.

For	 the	 CEC	 mobile	 application	 development	 project,	 the	 use	 case	 diagram
below	was	defined:



3.	How	will	the	actors	achieve	their	goals?

In	waterfall	methodology,	 the	 activities	of	 actors	 to	 achieve	 their	 goals	 can	be
shown	on	use	case	documents.

As	mentioned	 earlier,	 the	 scope	 of	 the	 CEC	mobile	 application	 project’s	 first
phase	 included	only	“View	and	Order	a	Product	“and	“Compare	Products”	use
cases.	 The	 interaction	 of	 the	 CEC	 customers	 with	 the	 mobile	 application	 to
achieve	these	goals	was	defined	on	use	case	documents.	The	“View	and	Order	a
Product”	use	case	was	documented	as	follows:

	



	



	

In	use-case	documentation,	the	following	best	practices	should	be	considered:



-Scenarios	 on	 the	 use	 case	 document	 describe	 the	 activities	 of	 actors	 while
achieving	their	goals.

-Each	scenario	step	(activity)	corresponds	to	a	functional	requirement.

While	 applying	 the	 use-case	 technique,	 there	 may	 be	 confusion	 about	 the
difference	between	a	use	case	and	a	functional	requirement.	Actually	it	is	quite
simple.	 Each	 use	 case	 represents	 a	 particular	 goal	 of	 an	 actor,	 whereas	 the
activities	to	achieve	that	goal	are	functional	requirements.

Let’s	 explain	 this	 relationship	 with	 an	 analogy:	 If	 a	 bottle	 is	 considered	 a
product,	“drinking	water”	is	a	use	case,	since	it	is	a	goal	of	an	actor	in	using	the
bottle.	 But	 “opening	 the	 bottle	 cap”	 is	 not	 a	 use	 case,	 because	 it	 is	 not	 a
particular	goal	of	the	actor.	People	don’t	buy	bottles	to	open	and	close	their	caps.
Opening	 the	 bottle	 cap	 is	 just	 a	 functional	 requirement	 to	 reach	 the	 goal	 of
“drinking	water.”

Similarly	 “View	 and	 Order	 a	 Product”	 is	 a	 use	 case	 for	 the	 CEC	 mobile
application,	 whereas	 “category	 selection”	 is	 one	 of	 the	 several	 functional
requirements	to	achieve	that	specific	use	case.

-Separate	main,	alternative,	and	exception	scenarios	of	the	use	case.

The	main	scenario	on	a	use	case	document	represents	 the	positive	flow	(happy
path)	of	activities	to	achieve	the	goal	of	the	actor	in	normal	conditions.

Alternative	scenarios	define	other	possible	ways	of	achieving	the	same	goal.

Exception	 scenarios	 define	 the	 activities	 of	 the	 user	 in	 exceptional	 and	 error
conditions.

For	the	“View	and	Order	a	Product”	use	case	in	the	CEC	mobile	application,	if
finding	 an	 item	 by	 navigating	 through	 categories	 is	 described	 in	 the	 main
scenario,	 then	 the	 discrete	 activities	 needed	 to	 find	 that	 item	 by	 using	 the
“Search”	 functionality	 should	 be	 defined	 within	 an	 alternative	 scenario.	 The
interaction	 between	 the	 customer	 and	 the	 CEC	 mobile	 application	 when	 the
customer	 attempts	 to	 order	 an	 out-of-stock	 item	 should	 be	 defined	 as	 an
exception	scenario.

-Define	exception	scenarios	separately	from	alternative	scenarios.

Alternative	 scenarios	 may	 include	 some	 nice-to-have	 conditions	 that	 can	 be



postponed	until	future	releases,	in	case	there	is	latency	in	the	project.	However,
exception	scenarios	include	error	conditions,	and	they	have	to	be	implemented	in
any	case.

-Use	case	documents	aim	to	answer	what	(functionality	needed	in	order	to	meet
user	 requirements)	 and	 how	 (nonfunctional	 requirements	 and	 business	 rules)
questions.

Clarifying	 the	 technically	how	 (inner	 technical	dynamics)	question	 is	not	a	use
case	document’s	objective.	Therefore,	don’t	include	technical	details	on	use	case
documents.	 According	 to	 the	 “just	 in	 time”	 principle	 of	 the	 lean	 approach,
technical	 requirements	 should	 be	 defined	 later	 in	 a	 separate	 technical	 design
document.

-Define	use	case	scenarios	with	the	users’	point	of	view,	but	don’t	include	user
interface	 details.	 Those	 details	 are	 defined	 later	 on	 prototypes	 and	 in	 user
interface	annotations	based	on	use	case	scenario	definitions.

For	example,	“customer	selects	category	by	clicking	buttons	at	the	middle	of	the
screen”	is	a	wrong	scenario	activity	definition.	“Customer	selects	a	category”	is
just	enough.

-In	addition	to	functional	requirements,	also	define	nonfunctional	requirements,
business	rules,	and	assumptions	on	use	case	documents.

-Define	business	rules	in	a	parametric	way.

This	will	 let	 the	project	team	easily	design,	develop,	and	change	business	rules
when	needed.

For	example,	in	the	“View	and	Order	a	Product”	use	case,	“User	is	notified	with
a	 message	 indicating	 that	 1	 percent	 commission	 will	 be	 charged	 for	 express
deliveries”	 is	 a	 wrong	 functional	 requirement	 definition.	 Instead	 it	 should	 be
defined	 as	 “User	 is	 notified	with	 a	message	 indicating	 that	 a	 commission	 rate
will	 be	 charged	 for	 express	 deliveries	 (BR1).”	 Business	 rules	 in	 this	 scenario
should	be	defined	in	the	business	rules	section	of	the	same	use	case	document.
The	business	rule	in	this	example	should	be	defined	as	follows:

BR1:	Express	Delivery	Commission	=	1	percent

-Define	nonfunctional	requirements,	such	as	usability,	performance,	and	privacy,



for	each	use	case	in	a	verifiable	(testable)	way.

For	example,	“After	the	customer	confirms	the	payment,	an	Order	Confirmation
Report	 should	 be	 displayed	 fast”	 is	 not	 a	 correct	 performance	 requirement
definition.	It	should	be	defined	as	“After	the	customer	confirms	the	payment,	an
Order	Confirmation	Report	should	be	displayed	within	two	seconds.”

-Limit	assumptions	to	the	conditions	in	which	the	user	has	no	control.

For	example,	“Product	availability	data	received	from	the	ERP	inventory	module
is	 up	 to	 date	 and	 accurate”	may	 be	 an	 assumption	 for	 the	 “View	 and	Order	 a
Product”	 use	 case.	But	 “the	 items	 that	will	 be	 ordered	 by	 the	 customer	 are	 in
stock”	 is	not	a	correct	assumption.	The	behavior	of	 the	customer	and	 the	CEC
mobile	application,	in	case	the	customer	attempts	to	order	an	out-of-stock	item,
should	be	defined	as	an	exception	scenario	on	the	use	case	document.	Otherwise
unclarified	 assumptions	 will	 create	 many	 issues	 at	 the	 user	 interface	 design,
technical	design,	and	development	stages	and	result	 in	waste	due	 to	unplanned
work.

-Benefit	from	flow	charts	to	visualize	use	case	scenarios.

In	 history,	 people	 first	 used	 drawings	 to	 communicate	with	 one	 another.	Even
after	the	invention	of	letters,	they	continued	to	use	drawings	as	an	easy	way	of
expressing	 themselves.	 Similarly,	 using	 diagrams	 such	 as	 flow	 charts	 is	 an
effective	way	of	visualizing	use	case	scenarios	and	clarifying	the	ambiguities	in
narrative	requirement	definitions	on	plaintext,	use	case	documents

Flow	 charts	 are	 useful	 for	 modeling	 and	 describing	 work	 flows	 with	 simple
diagramming	 conventions.	 A	 flow	 chart	 should	 be	 created	 for	 each	 use	 case.
Each	 branch	 on	 a	 flow	 chart	 represents	 the	 main,	 alternative,	 or	 exception
scenario	of	a	use	case.

The	flow	chart	below	represents	the	“View	and	Order	a	Product”	use	case	of	the
CEC	 mobile	 application.	 The	 branches	 on	 the	 chart	 show	 scenarios	 of	 that
specific	use	case.



User	Story	Technique

Unlike	 waterfall,	 agile	 methodology	 focuses	 on	 “working	 products	 over
comprehensive	documentation.”

In	scrum,	requirements	are	defined	as	short	and	simple	user	stories	(As	a	“role,”
I	want	“goal”)	in	parallel	with	the	above	manifesto	statement.

As	mentioned	earlier,	agile	scrum	methodology	was	applied	at	the	second	phase
of	the	CEC	mobile	application	project.	Instead	of	detailed	use	case	documents,
simple	user	stories	were	defined	at	this	phase.

Some	 of	 the	 user	 stories	 included	 in	 the	 product	 backlog	 of	 the	 CEC	mobile
application	project	were	as	follows:

-As	a	user,	 I	can	comment	on	CEC	products	 so	 that	other	customers	can	 learn
about	my	experience.

-As	 a	 user,	 I	 can	 rate	 CEC	 products	 so	 that	 other	 users	 can	 benefit	 from	my
opinion	in	making	their	buying	decisions.

-As	 a	 user,	 I	 can	 see	 the	 comments	 and	 ratings	 of	 customers	 posted	 via	 the
mobile	 application,	 also	 on	 the	 CEC	 web	 page,	 so	 that	 I	 can	 make	 a	 better
decision	in	product	selection.

-As	a	user,	I	can	search	for	the	address	of	the	nearest	CEC	dealer	stores	so	that	I
can	go	and	view	the	products	I	plan	to	buy.

-As	a	user,	 I	can	 track	 the	status	of	an	order	so	 that	 I	can	arrange	my	time	for
delivery	of	the	product	to	my	home.

-As	a	user,	I	can	cancel	my	order	on	the	mobile	application	so	that	I	don’t	have



to	contact	the	call	center.

-As	a	user,	I	can	get	campaign	offers	on	the	mobile	application	when	I	am	near	a
dealer	 location	 so	 I	 can	visit	 the	 store	 and	view	 the	product	with	a	discounted
price.

-As	 a	 user,	 I	 can	 get	 discount	 coupons	when	 I	 connect	 to	 a	 CEC	 product	 via
mobile	application	so	that	I	can	use	them	to	pay	less	for	my	later	purchases.

-As	a	user,	I	can	log	in	to	the	CEC	mobile	application	also	with	my	social	media
accounts	so	that	I	can	easily	post	information	about	CEC	products.

User	stories	are	 lightweight	compared	 to	use	cases.	To	make	user	stories	more
specific	and	descriptive	for	the	development	team,	acceptance	criteria	should	be
defined	 for	 each	 user	 story.	 Acceptance	 criteria	 should	 also	 include
nonfunctional	requirements	and	business	rules	associated	with	each	user	story.

Some	of	the	acceptance	criteria	defined	for	the	CEC	mobile	application	project
were	as	follows:











Do	We	Still	Need	Business	Analysts	in	Agile	Projects?



User	stories	are	defined	and	prioritized	on	the	product	backlog	by	a	business	unit
representative	 (product	 owner).	 He	 or	 she	 is	 the	 voice	 of	 the	 customer.	 In
theoretical	 formulation	 there	 is	 no	 need	 for	 business	 analysts	 or	 their	 detailed
requirements	documents	because	 the	product	owner	and	 the	agile	development
team,	which	consists	of	developers	and	QA	(quality	assurance)	specialists,	work
together	at	the	same	location	under	the	coordination	of	a	scrum	master.

However,	 in	 practice	 there	 are	 some	 difficulties	 in	 realizing	 this	 theoretical
framework.

Product	owners	(lacking	 technical	knowledge)	have	difficulties	 in	speaking	 the
same	 language	with	 technical	 teams	 (with	 limited	 or	 no	 business	 knowledge).
This	makes	it	harder	to	translate	business	needs	into	requirements.

Additionally,	product	owners	can	rarely	spend	enough	time	with	the	agile	team
during	 their	 own	 department’s	 busy	 times,	 and	 this	 makes	 the	 situation	 even
more	difficult.

To	 prevent	 these	 problems,	 business	 analysts	 have	 started	 to	 play	 the	 product
owner	role	or	have	been	involved	in	the	technical	team	that	used	to	be	composed
of	only	developers	and	QA	specialists.

Whether	it	is	waterfall	or	agile	methodology,	the	following	best	practices	should
be	applied	in	requirements	documentation	to	prevent	waste	and	ensure	the	best
communication	among	project	stakeholders:

Lean	Principle	of	“Just	Enough”

One	 of	 the	main	 goals	 of	 the	 lean	 approach	 is	 eliminating	waste	 by	 reducing
work-in-process	 inventory	 (WIP).	 At	 PDLC	 unnecessarily	 long	 analysis	 and
design	 documents	 represent	 WIP.	 To	 minimize	 WIP	 and	 eliminate	 waste,
analysis	and	design	documents	should	be	“just	enough.”	They	should	be	concise
without	 information	 overload.	 They	 should	 include	 only	 what	 is	 absolutely
necessary.

As	 expressed	 in	 the	 phrase	 “A	 picture	 is	 worth	 a	 thousand	 words,”	 business
analysis	diagrams,	such	as	use	case	diagrams,	flow	charts,	and	context	diagrams,
should	be	used	to	decrease	the	information	overload	on	requirements	documents.

At	the	requirements	documentation	phase,	the	objective	should	not	be	to	produce
fancy	documents	and	elegant	diagrams	 that	won’t	be	 read	by	any	person	other



than	 the	 business	 analyst	 who	 prepared	 it.	 Instead,	 the	 objective	 should	 be	 to
create	 products	 that	 best	 meet	 the	 business	 and	 customer	 needs	 by	 using
requirements	documents	and	diagrams	as	tools.

We	 need	 requirements	 documents	 during	 the	 project	 to	 translate	 business	 and
customer	needs	 into	 requirements	 for	developers’	best	understanding,	and	after
the	 project	 to	 use	 as	 a	 requirements	 repository	 during	 future
enhancement/modification	of	products.

The	detail	level	of	documents	should	be	calibrated	according	to	specific	project
needs	and	conditions	as	to	best	satisfy	the	above	objectives.

If	 the	 detail	 level	 of	 the	 documents	 is	 too	 low,	 there	 is	 a	 risk	 of	 incomplete
requirements	definition.	In	this	case	technical	teams	have	to	guess	about	product
features.	They	build	products	that	miss	critical	requirements,	and	this	triggers	a
vicious	 cycle	 of	 CRs	 (change	 requests).	 And	 sometimes	 they	 build	 in	 extra
features	 that	 are	 not	 included	 in	 the	 requirements	 documents,	 thinking	 that
customers	will	be	delighted	to	see	them.	This	situation	is	called	“gold	plating.”
Both	CRs	and	gold	plating	are	factors	that	result	in	scope	creep	and	thus	waste
during	the	project.

In	daily	life	there	would	be	chaos	if	there	were	no	governing	rules.	For	example,
although	 traffic	 lights	 seem	 to	 slow	 us	 down,	 traffic	would	 be	 locked	without
them.	Requirement	documents	are	like	the	traffic	lights	in	big	cities.	If	we	don’t
use	 them,	 the	project	 starts	 fast	 but	 is	 locked	at	 some	 later	 stage.	However,	 in
small	cities	we	don’t	need	to	locate	traffic	lights	everywhere.	Similarly,	in	small-
scale	projects	we	don’t	have	to	use	very	detailed	requirements	documents.

When	 team	members	 are	 at	discrete	 locations,	 this	may	 limit	 the	 collaboration
among	project	stakeholders.	The	same	problem	may	be	observed	on	outsourced
projects.	In	these	situations,	the	detail	level	of	documents	should	be	increased	to
ensure	clarity	and	correctness	of	requirements.

The	documents	prepared	during	the	analysis	and	design	phase	of	the	project	also
serve	as	a	requirements	repository.	This	makes	the	deployment	of	future	product
enhancements	 and	 modifications	 much	 easier	 and	 faster.	 Thus	 requirement
documents	should	be	kept	updated	even	after	the	project	to	serve	as	a	repository
of	requirements	when	needed	during	future	modifications	of	 the	products.	This
will	 save	 a	 lot	 of	 time	 for	 the	 project	 team	 responsible	 for	 later
enhancement/modification	work	and	prevent	a	considerable	amount	of	waste	in



the	future.

Lean	Principle	of	“Just	in	Time”

At	PDLC,

-the	answer	of	the	“technically	how”	question	(system	requirements)	depends	on
the	answer	of

-the	 “how”	 question	 (nonfunctional	 requirements	 and	 business	 rules),	 which
depends	on	the	answer	of

-the	 “what”	 question	 (user	 requirements,	 functional	 requirements),	 which
depends	on	the	answer	of

-the	“why”	question	(business	requirements).

According	to	the	“Just	in	Time”	principle	in	the	lean	approach,	these	questions
should	be	answered	in	order	and	should	be	defined	on	separate	documents.

First,	 the	 business	 requirements	 and	 user	 requirements	 should	 be	 defined	 and
listed	 on	 business-case	 or	 vision	 and	 scope	 documents;	 then	 functional
requirements,	 nonfunctional	 requirements,	 and	 business	 rules	 should	 be
documented	 on	 use	 case	 documents	 or	 user	 stories,	 depending	 on	 the	 selected
methodology.	 Then	 system	 requirements	 should	 be	 documented	 on	 technical
design	documents.	Defining	them	in	a	single	requirements	document	will	create
a	lot	of	complexity	and	confusion	for	business	units	and	technical	teams.

	



	
	
	
	
	
	
	
	
	
	
	

7.	UX	Design	and	Usability



	
The	best	user	experience	(UX)	on	a	product	can	be	achieved	only	if	usability	is
also	positioned	as	a	must-have	 requirement	 throughout	 the	analysis	and	design
process,	in	addition	to	functionality	and	visually	aesthetic	concerns.

Usability	is	the	criterion	that	determines	how	easy	a	product	is	for	its	users.	Even
if	it	 is	very	elegant	and	has	great	functionality,	a	product	cannot	fully	meet	the
needs	of	its	users	unless	it	is	usable.	So	unused	features	of	the	products	create	a
huge	amount	of	waste.

Gaudi	Approach

Throughout	the	history	of	architecture	design,	Gaudi	has	been	the	most	famous
architect	 with	 his	 user-centered	 architecture	 design	 approach.	 During	 his
childhood,	Gaudi	suffered	from	poor	health.	This	situation	prevented	him	from
going	 to	 school,	 and	 he	 spent	most	 of	 his	 time	 in	 nature.	His	 observations	 of
nature	inspired	his	design	approach,	which	can	be	summarized	as	follows:	“The
great	book	always	open,	and	which	we	should	make	an	effort	to	read,	is	that	of
Nature.”	 Using	 this	 philosophy	 he	 designed	 buildings	 with	 “organic	 style,”
which	then	became	an	important	standard	in	architecture.

Humanization	of	Products

Another	 man	 revolutionized	 the	 high-tech	 industry	 in	 a	 similar	 way.	 By
positioning	users	at	the	center	of	the	analysis	and	design	process,	Steve	Jobs	led
the	innovation	of	the	most	usable	consumer	electronics	products	ever.

He	achieved	creating	natural-born	users	of	his	products.	Even	kids	can	use	his
company’s	mobile	devices	with	gestures	 similar	 to	 their	natural	behavior.	This
new	 design	 approach	 made	 his	 company	 the	 best	 performer	 in	 the	 high-tech
industry.

After	 the	 success	 of	 this	 approach,	 it	 was	 realized	 that	 the	 humanization	 of
products	is	not	necessarily	achieved	by	anthropomorphic	features	but	mainly	by
ensuring	usability.

Building	User	Interfaces	around	Users



A	 lean	UX	design	 approach	 that	 is	 both	 user	 centered	 and	 iterative	 should	 be
applied	to	ensure	usability	of	a	new	product.

A.	Identify	User	Profiles

	 “Designing	 for	everybody”	 is	not	a	 feasible	and	effective	 strategy	 in	 terms	of
usability.	 Interfaces	of	 a	product	 are	usable	 if	 they	are	a	good	 fit	 for	 its	users.
Thus	a	product’s	user	interface	design	should	be	based	on	the	profile	of	its	target
user	groups.		Profiling	can	be	done	based	on	diverse	user	characteristics,	such	as:

-age,

-gender,

-education,

-computer	use	comfort	level,

-smart	phone	comfort	level,	and

-business	background.

For	 the	 CEC	 mobile	 application	 project,	 the	 profiling	 of	 customers	 was	 as
follows:



An	 effective	 way	 to	 understand	 user	 profiles	 during	 requirements-gathering
sessions	 is	 to	 ask	 users	 their	 opinions	 about	 the	 existing	 products.	 Users’
comments	 can	 be	 interpreted	 to	 understand	 their	 own	 capabilities	 and
weaknesses.	This	reminds	us	of	a	quotation	by	the	famous	philosopher	Spinoza:
“If	Pierre	tells	something	about	Paul,	we	learn	more	about	Pierre	than	we	learn
about	Paul.”

In	 addition	 to	 interviews	 and	 focus	 group	meetings	 with	 users,	 UX	 designers
should	also	conduct	field-analysis	techniques—such	as	shadowing	and	user	task
analysis—to	 observe	 users	 in	 their	 own	 context	 and	 then	 profile	 them
accordingly.

B.	Define	Personas	and	Their	Mental	Models

Another	 important	aspect	of	user	centricity	 is	emotional	design.	Human	beings
judge	 products	 based	 on	 their	 left	 brains’	 logical	 and	 right	 brains’	 emotional
capabilities.	 And	 most	 of	 the	 time,	 emotion	 is	 the	 main	 criterion	 in	 their
judgments	to	buy	a	product.

In	 alignment	 with	 their	 emotions,	 users	 first	 create	 a	 mental	 model	 of	 the
products	 they	 use.	 This	model	 guides	 them	 throughout	 their	whole	 experience
with	the	product.	Therefore,	user	interface	designs	should	be	based	on	the	mental
model	of	users	rather	than	of	designers.

Personas,	 which	 are	 representative	 imaginary	 characters,	 are	 the	 best	 way	 to
define	 the	 mental	 models	 of	 diverse	 user	 profiles	 and	 predict	 their	 expected
interaction	with	the	product	and	behavior	on	user	interfaces.	Although	there	can
be	several	user	profiles	for	a	product,	UX	designers	should	limit	the	number	of
personas	 to	 three	 (or	 at	most	 four	 in	 extreme	cases)	 to	prevent	 falling	 into	 the
trap	of	“designing	for	everybody.”	A	persona	description	should	include	a	name,
a	photo,	demographic	information,	and	a	scenario	section.

For	the	CEC	mobile	application	project,	the	UX	team	defined	the	following	two
personas	after	analyzing	user	profiles	and	working	with	the	marketing	business
unit.





C.	Interaction	Design

In	the	lean	UX	design	approach,	meeting	user	needs	with	a	minimum	number	of
steps	on	the	product’s	user	interfaces	is	highly	appreciated.	This	can	be	achieved
by	a	good	interaction	design.

“Architecture	Begins	Where	Engineering	Ends”	—Walter	Gropius

If	well	defined,	 flow	charts	visualizing	use	case	 scenarios	 form	a	perfect	basis
for	design	interaction	of	users	with	the	product.

During	interaction	design,	boxes	on	the	branches	of	the	flow	chart	are	grouped
within	 containers.	 These	 containers	 (dashed	 boxes)	 become	 a	 primary	 user-
interface	 window,	 a	 dialogue	 box,	 or	 a	 message	 box.	 Or	 several	 containers
combine	and	form	a	single	user	 interface.	Links	between	flow	chart	containers
become	navigation	elements,	such	as	links.	This	method,	which	is	mainly	based
on	the	grouping	of	requirements,	mitigates	the	risk	of	missing	any	functionality



on	user	interfaces	of	the	product.	It	also	prevents	mismatch	between	the	flow	of
use	case	scenarios	and	the	flow	of	user	interfaces,	and	ensures	usability.

For	 the	CEC	mobile	 application	 project,	 flow	 charts	were	 used	 for	 interaction
design	as	follows:		

	

D.	Information	Architecture

	
User	 interfaces	 of	 products	 are	 composed	 not	 only	 of	 functional	 requirements
(tasks)	but	also	of	content	requirements.



Therefore,	 in	 parallel	 to	 interaction	 design	 (based	 on	 functional	 requirements),
the	 information	 architecture	 (based	 on	 content	 requirements)	 should	 also	 be
designed.	 The	main	 objective	 of	 information	 architecture	 design	 is	 to	 identify
content	 requirements,	 define	 content	 categories,	 and	 finalize	 the	 navigation
structures	of	a	product’s	user	interfaces	by	using	techniques	such	as	card	sorting
and	wireframes.

In	the	lean	approach,	the	content	on	the	user	interfaces	of	a	product	should	have
two	main	attributes:

1.	Concise

-Have	statements	that	are	short	and	to	the	point

-Leave	no	room	for	misinterpretation

-Have	content	 that	 is	simple	and	expressed	with	a	minimum	number	of	words.
This	 quotation	 from	Mark	 Twain	 describes	 this	 situation	 very	 well:	 “I	 didn’t
have	time	to	write	a	short	letter,	so	I	wrote	a	long	one	instead.”

2.	Useful

-The	 content	 on	 user	 interfaces	 should	 remove	 the	 friction	 of	 product	with	 its
users.	 User	 interfaces	 should	 speak	 the	 language	 of	 users,	 not	 the	 technical
teams.

-Rather	than	offering	a	one-size-fits-all	approach,	the	content	should	address	the
information	needs	of	target	personas.	Persona	representatives	should	feel	that	the
content	on	the	product’s	user	interfaces	is	created	especially	for	them.

-Content	 should	 have	 clear	 links	 and	 CTAs	 (call	 to	 actions)	 that	 help	 users
navigate	intuitively	without	too	much	thinking.

Card-Sorting

If	content	 is	not	grouped	correctly,	users	will	have	difficulty	finding	what	 they
are	 looking	 for	 on	 the	 product’s	 user	 interfaces.	 This	 is	 a	 common	 type	 of
usability	defect.

Card-sorting	 is	 an	 effective	 information	 architecture	 technique	 to	 prevent	 this



risk.	It	is	used	to	categorize	content.

In	the	card-sorting	technique,	content	items	are	written	on	cards,	and	users	who
represent	personas	are	asked	to	group	these	items.

By	 using	 a	 card-sorting	 study,	 the	CEC	mobile	 application’s	 product	 category
structure	was	defined	as	follows:

	

E.	User	Interface	Design

UX	designers	convert	interaction	designs	and	information	architectures	into	user
interfaces	of	products	by	applying	UX	design	and	usability	principles.

Even	 the	most	 experienced	designers	 can’t	 produce	 the	optimum	design	 at	 the
first	 trial.	 Good	 design	 is	 a	 result	 of	 several	 iterations.	 Iteration	 is	 a	 cycle	 of
doing	something,	testing	it,	improving	it,	and	retesting	it.

Making	 iterations	 on	 the	 final	 product	 is	 a	 very	 costly	 approach.	 Because	 for
every	iteration,	the	technical	components	of	the	product	have	to	be	changed	and
retested,	whereas	changing	the	prototype	is	much	easier	and	faster	compared	to
changing	the	final	product.

In	 the	 lean	 approach,	 the	 project	 team	 and	 customers	 should	 frequently	 come
together	 and	 evaluate	 the	 functionality	 and	 usability	 of	 the	 product	 early	 on
prototypes.



Recent	prototyping	tools	allow	mocking	up	the	products	and	simulating	them	in
an	 interactive	 way.	 They	 allow	 user	 actions,	 such	 as	 navigating	 between
interfaces,	selecting	options,	and	getting	notifications	by	error	messages.	Thanks
to	these	interactive	features,	both	functionality-and	usability-related	defects	can
be	 found	 and	 fixed	 at	 the	 early	 stages	 of	 the	 project	without	waiting	 for	 user
acceptance	tests	on	the	final	product.

By	this	 iterative	approach,	a	high	number	of	CRs	can	be	prevented.	Also	early
detection	of	defects,	without	waiting	 for	 late	user-acceptance	 tests,	 reduces	 the
cost	of	fixing	them	and	eliminates	waste.

In	the	lean	approach,	prototypes	are	also	considered	work-in-process	inventory.
Thus,	 instead	 of	 mocking	 up	 every	 user	 interface	 and	 creating	 waste,	 UX
designers	 should	create	 the	prototypes	of	user	 interfaces	corresponding	only	 to
the	most	frequently	used,	high-priority	features.

For	 the	CEC	mobile	 application	 project,	 the	BA-Works	 team	only	mocked	 up
user	interfaces	of	the	high-priority	product	features	that	were	developed	with	the
waterfall	 approach	 at	 the	 first	 phase	 of	 the	 project.	 To	 achieve	 simplicity,	 the
mobile	 application’s	 user	 interfaces	 included	 everything	 users	 needed	 and
nothing	they	didn’t.

Having	 interaction	 designs	 based	 on	 well-prepared	 use	 cases	 and	 flow	 charts
made	 it	 easy	 for	 the	project	 team	 to	 create	prototypes	of	high-priority	 features
that	 made	 up	 the	 core	 version	 of	 the	 product.	 The	 team	 detected	 and	 fixed
functionality-and	usability-related	defects	early	on	the	prototype	before	releasing
it	in	the	market.	This	prevented	a	considerable	amount	of	waste	due	to	potential
CRs.



	

Do	We	Need	Prototypes	in	Agile	Projects?

As	mentioned	earlier,	agile	methodology	was	applied	at	the	second	phase	of	the
CEC	mobile	 application	 project.	 To	minimize	WIP	 inventory,	 our	 team	didn’t
prototype	 user	 stories.	 Instead	 working	 parts	 of	 the	 mobile	 application
corresponding	to	user	stories	were	used	for	functional	and	usability	testing.

For	 agile	 projects,	 if	 user	 stories	 have	 the	 right	 level	 of	 granularity	 and	 are
atomic,	 working	 parts	 of	 the	 product	 can	 be	 developed	 quickly	 and	 used	 for



functional	and	usability	testing	instead	of	spending	extra	time	for	prototyping.

Picasso-Perfect	Designs

During	 prototyping,	 UX	 designers	 and	 business	 analysts	 may	 hesitate	 when
considering	 whether	 to	 behave	 like	 a	 craftsman	 or	 an	 artist.	 Until	 the
Renaissance,	the	majority	of	architects	designed	their	artifacts	with	a	craftsman
approach.	Aesthetics	were	still	 important	 for	architects,	but	 their	main	concern
was	 designing	 buildings,	 bridges,	 and	 fountains	 that	 best	met	 the	 needs	 of	 the
public.	 After	 the	 freedom	 and	 creativity	 impact	 of	 the	 Renaissance,	 architects
started	 to	 behave	 more	 like	 artists	 and	 focused	 on	 designing	 more	 aesthetic
pieces.

Instead	 of	 trying	 to	 create	 Picasso-perfect	 designs	 with	 an	 artistic	 approach,
business	analysts	and	UX	designers	should	always	behave	like	craftsmen	during
prototyping.	They	should	focus	on	meeting	the	functional	needs	of	customers	in
the	most	usable	way,	leaving	aesthetic	concerns	to	visual	designers.	In	summary
they	should	create	prototypes	that	mainly	show	how	the	product’s	user	interfaces
will	interact	with	users	without	its	visual	bells	and	whistles.

Less	is	Much	More	in	the	Lean	Approach

With	 the	 lean	approach,	user	 interfaces	of	products	 should	be	designed	 simple
enough	 to	 leave	 no	 need	 for	 learning	 how	 to	 use	 the	 product.	 The	 best	 user
interfaces	are	simplistic	and	intuitive	ones,	on	which	users	can	easily	find	what
they	are	looking	for	and	complete	their	tasks	with	minimum	effort	and	error.

On	the	opposite	side,	busy	and	noisy	interfaces	make	the	experience	complicated
for	users.	This	kind	of	design	can	be	easily	created	by	distributing	the	functional
specs	 randomly	 on	 different	 parts	 of	 user	 interfaces	 without	 too	much	 design
thinking.

Legendary	 soccer	 player	 Johan	 Cruyff	 once	 said,	 “Football	 is	 simple.	 But
nothing	 is	more	difficult	 than	playing	 simple	 football.”	Similarly,	 it	 is	not	 that
easy	to	create	simplistic	and	intuitive	user	 interface	designs.	Simplistic	designs
require	extra	time	and	effort.

The	 secret	 to	 achieving	 simplicity	 in	 design	 is	 best	 explained	 in	 the	 quotation
from	 famous	 novelist	 Antoine	 de	 Saint	 Exupery:	 “A	 designer	 knows	 he	 has
achieved	 perfection	 not	 when	 there	 is	 nothing	 left	 to	 add,	 but	 when	 there	 is
nothing	left	to	take	away.”



However,	 in	 simplifying	 user	 interfaces,	 an	 Einstein	 quotation	 should	 also	 be
remembered	to	prevent	the	risk	of	false	simplicity:	“Everything	should	be	made
as	 simple	 as	 possible,	 but	 not	 simpler.”	 The	 unnecessary	 parts	 of	 the	 user
interface	 should	 be	 removed	 to	 make	 the	 interfaces	 simpler,	 unless	 removing
these	parts	clears	away	any	product	functionality.

Customer	Journey	Mapping

For	the	CEC	mobile	application	project,	our	team	applied	a	customer	experience
evaluation	technique	called	customer	journey	mapping	in	addition	to	traditional
usability	testing	methods.

Customer	 journey	mapping	was	 an	 effective	 tool	 to	 visualize	 and	 evaluate	 the
end-to-end	 experience	 of	 CEC	 customers	 at	 different	 touch	 points.	 From	 the
customers’	own	perspective,	their	experience,	emotions,	and	satisfaction	level	at
each	part	of	the	journey	were	visualized.



In	addition	 to	exploring	 improvement	areas	 for	 interaction	channels,	 this	 study
also	helped	the	team	determine	whether	desired	value	was	created	for	customers
at	each	touch	point.

For	instance,	at	the	second	phase	of	the	project,	the	following	additional	features
were	identified	as	an	outcome	of	the	customer	journey	mapping	study:

-Customers	 should	be	able	 to	 rate	and	comment	on	dealer	 service	quality	after
delivery	and	setup	of	the	products.

-Comments	and	ratings	of	customers	about	CEC	products	that	are	posted	via	the
mobile	application	should	be	also	displayed	on	the	web	page.



	

	

	
	
	
	
	
	
	
	
	

8.	Technical	Design	and	DevOps



	
Refactoring	and	Tolerance	for	Future	Changes

Due	 to	 the	 iterative	nature	of	 the	 lean	approach,	 the	 technical	architecture	of	a
product	should	allow	revisions	with	new	and	updated	features	at	later	releases.

During	iterative	development,	if	the	product	has	intensive	integration	among	its
components	the	following	happens:

The	team	delivers	product	parts	A	and	B	without	any	major	problems	at	 initial
iterations.	Nevertheless,	the	team	realizes	that	it	has	to	make	changes	to	parts	A
and	B	while	working	on	part	C	since	it	has	integration	points	with	those	parts.	In
other	 words,	 A	 and	 B	 have	 to	 be	 refactored	 although	 they	 have	 already	 been
released.

Refactoring	 means	 changing	 the	 existing	 technical	 architecture	 of	 a	 product
without	 changing	 its	 behavior,	 and	 it	 is	 always	 harder	 than	 developing	 from
scratch.	These	back-and-forth	moves	with	challenging	 refactoring	efforts	make
the	 build	 and	 delivery	 of	 the	 product	 with	 integrated	 components	 even	 more
difficult	at	later	iterations.

Spaghetti	Architectures

These	 frequent	 refactoring	 efforts	 necessitate	 excellent	 architecture	 design	 and
development	skills	within	the	technical	team.	Whether	the	selected	methodology
is	 agile	 or	 waterfall,	 architects	 should	 formulate	 a	 highly	 flexible	 technical
architecture	design.	Otherwise	 the	architecture	will	be	more	 like	spaghetti	with
additions	and	updates	at	following	iterations.	This	will	result	in	a	fragile	product
with	performance,	security,	predictability,	and	reliability	problems.

Flexible	Data	Models

To	build	a	highly	 flexible	 technical	architecture,	 the	data	model	of	 the	product
should	 be	 parametric	 and	 flexible.	 This	 way	 excessive	 data	 migration	 and
conversion	needs,	due	 to	new	 transactional	 and	 reporting	 requirements,	 can	be
prevented.

During	the	requirements-gathering	phase	of	the	CEC	mobile	application	project,



the	BA-Works	team	defined	the	reporting	requirements.	They	included:

-Share	of	mobile	channel	in	total	sales	revenue

-Mobile	channel	sales	revenue	by	dealer

-Mobile	channel	sales	revenue	by	product	category

-Mobile	channel	sales	revenue	by	product

-Conversion	 rate	 showing	 how	many	 customers	 ordered	 a	 product	 when	 they
used	the	mobile	application

-Effectiveness	 of	 contextual	 campaign	 notifications	 displayed	 on	 the	 mobile
application.

To	create	a	flexible	technical	architecture,	BA-Works	business	analysts
considered	all	transactional	and	reporting	needs	for	the	CEC	mobile	application
when	designing	its	data	model,	which	is	shown	below.

Performance	and	Reliability



In	 the	 lean	approach,	 the	elegance	of	a	product	 is	not	only	 limited	to	 its	visual
aspects.	 An	 elegant	 product	 is	 one	 that	 proposes	 maximum	 value	 for	 its
customers	with	the	highest	level	of	reliability	and	performance.	The	major	factor
that	makes	a	product	fragile	is	its	technical	complexity.	This	is	usually	a	result	of
embedding	 an	 excessive	 number	 of	 features	 into	 a	 product	 that	 has	 limited
hardware	capacity.

One	of	 the	solutions	for	 this	problem	is	 to	build	an	open	 technical	architecture
that	allows	the	product	to	communicate	with	other	products	by	transmitting	data
between	 them	 and	 sharing	 their	 complementary	 features.	 This	 way,	 a	 single
product	does	not	have	to	include	all	 those	features	within	it.	This	kind	of	open
technical	 architecture	 is	 the	 main	 driver	 behind	 wearable	 technologies’
capabilities	that	are	beyond	their	own	capacity.

For	instance,	users	of	a	simple,	wearable	step	counter	can	also	manage	their	diet
and	personal	 training	programs	via	its	mobile	 interfaces	by	connecting	to	other
products	such	as	electronic	scales	and	fitness	devices.

Big	Data

In	 time	 the	data	generated	by	products	may	 reach	 to	 a	big	 scale.	This	 level	of
data	can’t	be	stored	within	them	due	to	limited	hardware	capacity.	To	overcome
this	challenge,	the	data	can	be	stored	and	managed	on	the	cloud.	However,	this
will	only	create	data-level	waste	unless	companies	utilize	big	data	technologies
to	generate	valuable	insights	for	users	of	their	products.

For	 instance,	 the	wearable	 step	counters	mentioned	earlier	provide	helpful	 and
motivating	insights,	such	as	comparing	the	user’s	activity	and	diet	statistics	with
other	users’	 results.	They	also	do	 real-time	analysis	of	 the	user’s	daily	activity
and	 diet	 data	 and	 send	 notifications	 in	 case	 they	 can’t	 fulfill	 the	 target	 levels.
Such	big	data	insights	enrich	the	value	proposition	of	these	products	from	being
simple	step	counters	to	healthy	life	assistants.

DevOps

Due	to	the	iterative	nature	of	the	lean	approach,	the	product	goes	live	in	multiple
releases.	Sometimes	the	products	developed	within	planned	time	frames	cannot
be	released	on	time	because	of	deployment	problems.



To	 mitigate	 deployment	 risks,	 such	 as	 latencies,	 high	 failure	 rates,	 and	 long
fixing	and	recovery	 times,	operations	 teams	should	start	working	 together	with
technical	 teams	during	 the	design	and	development	of	 the	products	and	always
be	synchronized	with	 them.	Otherwise	deployment	will	always	be	a	bottleneck
and	create	operational-level	waste	at	every	release	of	the	product.



	
	

	

	

	

	

	

	

	

9.	Quality	Assurance	and	Testing
	



	
In	the	lean	approach,	product	defects	result	in	quality-level	waste	due	to	the	time
and	resources	spent	to	find,	fix,	and	retest	them.

To	 eliminate	 this	 kind	 of	 waste,	 principles	 of	 global	 QA	 and	 testing
organizations,	 such	 as	 ISTQB®	 (International	 Software	 Testing	Qualifications
Board),	should	be	applied	within	the	product	development	life	cycle:

Testing	shows	presence	of	defects.

Testing	 shows	 the	 presence	 of	 defects	 but	 cannot	 prove	 zero	 defects.	 Testing
efforts	 reduce	 the	 number	 of	 undiscovered	 defects	 on	 the	 product	 but	 cannot
claim	zero	defects.

In	 the	 lean	 approach,	 the	 balance	 between	 time	 to	market	 and	 product	 quality
should	 be	well	 established.	Although	 not	 desired,	 a	 product	may	 even	 go	 live
with	 low-priority	defects	 in	case	 time	 to	market	 is	highly	critical.	This	usually
happens	at	the	first	iteration	of	a	project	in	order	to	release	a	product	earlier	than
competitors.	These	defects	can	then	be	fixed	at	later	iterations.

Exhaustive	testing	is	impossible.

Testing	every	single	part	of	a	product	 is	not	possible	due	 to	 time	and	resource
limitations.	In	the	lean	approach,	testing	efforts	should	focus	on	high-risk	areas
instead	 of	 exhaustive	 testing.	 Risk	 prioritization	 should	 be	 done	 according	 to
potential	 impact	 and	 likelihood	 levels.	 This	 way,	 the	 waste	 due	 to	 excessive
testing	efforts	can	be	prevented.



For	 most	 of	 the	 projects,	 requirement	 documents	 are	 used	 as	 a	 basis	 for	 test
cases.	 However,	 test	 cases	 should	 not	 only	 contain	 positive	 scenarios	 on
requirement	documents;	 they	 should	also	cover	negative	 test	 conditions.	These
negative	 test	 conditions	 can	 be	 identified	 by	 applying	 risk-based	 testing
techniques,	such	as	FMEA	(Failure	Mode	and	Effect	Analysis).

Applying	black-box	test	techniques,	such	as	equivalence	partitioning,	boundary
value,	 and	 combinatorial	 analysis,	 helps	 to	 achieve	 enough	 test	 coverage	with
minimum	test	data.	These	techniques	prevent	waste	by	eliminating	the	need	for
excessive	test	data.

Early	testing

The	product	development	life	cycle	is	like	a	river	with	requirements	at	its	source.
If	you	can’t	clean	the	river	at	its	source,	you	will	have	a	dirty	river	flowing	down
the	 hill.	 A	 reactive	 rather	 than	 a	 proactive	 approach	 to	 clean	 the	 river	 will
increase	the	costs	and	risks	exponentially.

Due	 to	 the	 gravity	 of	 this	 situation,	 quality	 assurance	 teams	 should	 be	 more
proactive	and	start	 testing	as	early	as	possible	during	 the	product	development
life	cycle.	Resolution	of	early	defects	prevents	waste	due	to	costly	fixes	at	later
stages.	Without	waiting	for	the	development	of	the	final	product,	testing	should
be	 started	 early	 by	 reviews	 on	 requirement	 documents	 and	 user	 tests	 on



prototypes.	By	doing	this	both	functionality-and	usability-related	defects	can	be
easily	found	and	fixed	at	the	early	phases	of	the	project.

Pesticide	paradox

If	the	same	kinds	of	tests	are	repeated	again	and	again,	the	same	set	of	test	cases
will	 no	 longer	 help	 to	 find	 any	 new	defects	 on	 the	 product.	To	 overcome	 this
“pesticide	 paradox,”	 the	 test	 cases	 should	 be	 regularly	 reviewed	 and	 updated.
Thus	the	waste	due	to	ineffective	testing	efforts	will	be	prevented.

To	ensure	enough	coverage,	QA	teams	should	 form	 the	 test	basis	according	 to
requirements	and	business	rules	on	analysis	documents	and	combine	them	with
risk-based	test	conditions.

During	phase	one	of	the	CEC	mobile	application	project,	the	“View	and	Order	a
Product”	 test	 case	 was	 defined	 as	 follows	 based	 on	 main,	 alternative,	 and
exception	scenarios	of	the	relevant	use	case	document:



	





As	 shown	 on	 the	 above	 example,	 use	 case	 documents	 that	 have	 detailed
scenarios	form	a	good	basis	for	test	cases.	When	agile	methodology	is	applied,
however,	 user	 stories	 and	 their	 acceptance	 criteria	 do	 not	 have	 that	 level	 of
detail.	To	ensure	enough	test	coverage,	QA	teams	on	agile	projects	should	work
in	high	collaboration	with	product	owners	and	other	business	unit	representatives
during	the	tests.

Automated	Testing

In	 lean’s	 iterative	 approach,	 adding	new	components	 to	 a	 live	product	without
impacting	 its	already	 released	parts	 is	 like	changing	 the	 tire	of	a	car	while	 it’s
moving.

This	 iterative	development	 approach	 requires	 comprehensive	 regression	 testing
of	the	product	components	that	were	already	released	in	previous	iterations.	To
ensure	enough	 test	coverage,	 the	parts	with	both	direct	and	 indirect	 integration
points	 should	 be	 retested.	 This	 brings	 a	 huge	 amount	 of	 extra	 testing	 effort.
Testing	the	same	components	manually	and	repetitively	is	both	time-consuming
and	impractical.	To	make	this	process	more	efficient,	automated	regression	test
suites	can	be	created.

However,	 automation	 itself	 is	 a	 challenging	 project.	 Project	 managers	 should
consider	the	time	needed	to	implement	automation	tools	as	a	separate	risk	item
in	every	project.	They	should	not	use	an	automation	tool	for	 the	first	 time	in	a
time-sensitive,	 high-priority	 project.	 The	 team	 should	 focus	 on	 the	 project,



instead	of	allocating	its	 limited	time	for	 tool	 implementation.	Project	managers
should	remember	that	upper	management	always	takes	account	of	the	score	but
not	how	the	team	played	during	the	game.

In	an	automated	 regression-testing	process,	 test	procedures	are	captured	as	 test
scripts	at	the	first	test	cycle	and	then	run	automatically	in	following	test	cycles.
However,	 test	 automation	 is	 not	 a	magic	way	of	 finding	defects	 by	pressing	 a
single	button.	Most	of	the	time	technical	problems	arise	on	test	automation	tools
during	test	script	generation.	Fixing	these	problems	requires	advanced	technical
skills.	 For	 this	 reason	 test	 automation	 should	 always	 be	 the	 responsibility	 of
technical	QA	teams	rather	than	business	analysts.

In	 some	 circumstances	manual	 testing	 becomes	more	 efficient	 than	 automated
testing;	it	takes	much	more	time	to	generate	automated	test	scripts	compared	to
running	test	cases	manually.	Especially	in	time-sensitive,	fast-track	projects,	this
results	in	a	weird	situation	of	coding	around	bugs	instead	of	finding	and	fixing
them.	Project	managers	and	QA	managers	should	consider	this	issue	as	a	project
risk.	 They	 should	 mitigate	 this	 risk	 by	 determining	 the	 right	 level	 of	 test
automation.

Shelfware

In	recent	years,	we	have	started	to	see	a	different	“ware”	category	(like	hardware
and	 software).	 This	 category	 is	 called	 shelfware.	 Shelfware	 represents	 the
automation	software	that	sits	on	the	shelves	of	the	company	without	being	used
by	any	single	person.

Shelfware	causes	a	huge	amount	of	tool-level	waste.	At	some	public	companies,
high	 license	 and	 support	 costs	 paid	 for	 useless	 shelfware	 has	 even	 become	 an
issue	investigated	during	internal	audits.

To	prevent	shelfware	situation,	managers	should	know	that	automation	tools	are
wizards	 but	 not	 magicians.	 They	 have	 limits.	 They	 can	 only	 help	 the	 project
team	do	its	work	in	a	more	convenient	way	by	automating	some	of	the	tasks,	but
not	 all	 of	 them.	 If	 the	 organization’s	QA	 process	maturity	 is	 at	 a	 good	 level,
automation	 makes	 it	 better;	 otherwise,	 automation	 may	 even	 make	 it	 worse.
Hence	managers	should	first	focus	on	improving	their	QA	and	testing	skills	and
then	give	the	go-ahead	for	the	automation	initiative.	If	the	team	has	only	limited



knowledge	 of	 test	 methods	 and	 techniques,	 automation	 will	 only	 bring	 extra
problems	rather	than	benefits.

UAT	Is	the	Last	Filtering	Point	of	Defects.

Even	with	 the	existence	of	a	separate	QA	team,	business	analysts	should	be	 in
charge	of	coordinating	and	guiding	business	units	during	UAT	(user	acceptance
tests).	 UAT	 is	 the	 final	 stage	 for	 validating	 requirements	 and	 ensuring	 the
fulfillment	of	business	needs	of	the	new	product.	In	case	UAT	is	not	conducted
effectively,	 end	 users	will	 find	 defects	 after	 the	 release,	 and	 this	will	 result	 in
money	and	reputation	loss.

To	 increase	 the	 effectiveness	 of	 UAT,	 users	 should	 first	 conduct	 experience-
based	tests	without	running	any	test	cases.	Afterward	another	UAT	cycle	should
be	 organized	 to	 ensure	 enough	 test	 coverage	 by	 running	UAT	 cases.	Business
analysts	can	prepare	UAT	cases	by	simplifying	the	test	cases	generated	by	QA
teams.

Normally	 user	 training	 should	 be	 provided	 after	 UAT	 if	 the	 new	 product	 is
replacing	 an	 existing	 one.	 Users	 will	 be	 able	 to	 test	 the	 product	 in	 a	 more
independent	 and	unbiased	way.	But,	 if	 the	 product	 is	 a	 new	one,	 user	 training
should	be	conducted	before	UAT.	Otherwise	users	will	have	difficulties	in	using
the	product,	which	is	completely	new	to	them,	and	this	will	result	in	lower	test
coverage	ratios	and	longer	UAT	durations.



	

	
	
	
	
	
	
	
	
	
	

10.	Project	Management



	
While	project	managers	are	responsible	for	project	scope	management,	business
analysts	are	responsible	for	product	scope	management.

Product	 scope	 represents	 the	 features	of	 the	product	 to	meet	business	and	user
requirements,	 whereas	 project	 scope	 is	 defined	 as	 the	 work	 that	 needs	 to	 be
accomplished	 to	 build	 and	 release	 the	 product	 with	 these	 specified	 features.
Therefore,	 in	 order	 to	 define	 the	 project	 scope	 correctly,	 the	 project	 manager
should	 assist	 business	 analysts	 in	 defining	 a	 clear	 and	 correct	 product	 scope
aligned	with	business	and	user	requirements.	Otherwise	resources	are	rooted	in
the	wrong	direction,	and	this	results	in	project-level	waste.

Output	Trap

In	 addition	 to	 scope	 management,	 time	 and	 cost	 management	 are	 the	 other
critical	knowledge	areas	in	project	management.	Sometimes	the	pressure	to	meet
time	and	budget	targets	can	lead	project	managers	to	focus	more	on	generating
outputs	 (deliverables)	 than	 on	 outcomes	 (value).	However,	 if	 the	 requirements
cannot	be	met,	 the	project	won’t	be	 successful	 even	 if	 it	 is	 completed	on	 time
and	 within	 budget	 constraints.	 To	 prevent	 this	 “output”	 trap	 and	 assure	 the
delivery	of	value-adding	“outcomes,”	project	managers	 should	 always	work	 in
collaboration	with	business	analysts	to	ensure	value	creation	at	every	step	of	the
project.	 They	 should	 keep	 all	 project	 stakeholders	 connected	 throughout	 the
product	development	lifecycle.

To	achieve	this,	project	managers	should	manage	the	project	in	the	field.	Some
project	 managers	 spend	 most	 of	 their	 time	 at	 the	 PMO	 (project	 management
office)	 instead	 of	 attending	 requirements-gathering	 meetings,	 reviewing
requirements	documents,	and	participating	in	testing	sessions.

In	 the	 lean	 approach,	 project	managers	 should	go	 to	 the	gemba	and	have	high
bandwidth	 communication	with	 project	 stakeholders	 and	 customers	 throughout
the	product	development	lifecycle.

Whole	Optimization	Instead	of	Suboptimization

The	 lean	 approach	 aims	 to	 remove	 the	 checks	 and	 balances	 within	 project



stakeholders	to	ensure	collaboration.

Although	 segregation	 of	 duties	 is	 important	 to	 manage	 accountability	 among
team	members,	it	should	not	result	in	silos.

Silos	usually	form	due	to	micromanagement	of	separate	teams	such	as	business
analysts,	 designers,	 developers,	 and	 quality	 assurance	 specialists.
Micromanagement	results	in	the	suboptimization	of	each	group’s	objectives	with
output-oriented	 KPIs	 (key	 performance	 indicators),	 such	 as	 the	 number	 of
requirements	 documented,	 number	 of	 defects	 found,	 or	 number	 of	 codes	 built.
But	in	the	lean	approach,	KPIs	aim	to	optimize	the	objectives	of	the	whole	team.
For	 instance,	 KPIs	 such	 as	 “the	 number	 of	 user	 requirements	 satisfied	 at	 a
specific	release”	or	“percent	of	business	requirement	targets	met	at	first	release”
will	 help	 the	 project	manager	 keep	 every	 project	 stakeholder	motivated	 in	 the
same	direction	to	generate	desired	value	for	customers.

In	 applying	 the	 lean	 approach	 for	 the	 first	 time,	 project	 managers	 should
remember	that	“it	is	not	the	strength	of	waves	that	shapes	the	rocks,	but	it	is	their
persistence.”	Thus,	instead	of	giving	up	early,	they	should	continuously	motivate
their	teams	to	apply	lean	principles	and	techniques	to	their	projects	by	managing
any	kind	of	internal	resistance.

End	of	the	Story	at	the	CEC	Company

Thanks	 to	 applying	 the	 lean	 approach	 to	 the	 CEC	 mobile	 application
development	project,	 the	project	 team	managed	 to	be	value	oriented,	 customer
centered,	 and	 iterative	 throughout	 the	 project.	 This	 helped	 the	 CEC	 company
satisfy	all	of	the	below	project	objectives:

-Differentiate	 itself	by	having	a	mobile	channel	earlier	 than	all	other	consumer
electronics	companies

-Be	innovative	in	creating	a	mobile	sales	channel	with	features	that	were	directly
driven	by	CEC	customer	needs

-Prevent	waste	by	only	investing	in	features	that	were	really	necessary

-Improve	scale	that	was	once	limited	to	the	number	and	visibility	of	dealers

-Satisfy	 the	marketing	 business	 unit	 by	 releasing	 the	mobile	 application	 at	 the
time	they	requested



-Be	aware	of	risks	early	and	mitigate	them	quickly

The	 project	 was	 completed	 on	 time	 to	 the	 high	 satisfaction	 of	 all	 project
stakeholders.	 For	 this	 project,	 upper	 management	 realized	 the	 benefits	 of	 the
lean	approach	and	decided	to	apply	this	approach	to	all	other	projects.



	

	

	

	

	

	

	

									

Index

	 	

	



	







	

	


	1. Lean Principles to Achieve Innovation and Faster Time to Market
	2. Lean Enterprise Architecture Management
	3. Lean Strategic Analysis and Product Scope Definition
	4. Which Methodology is Best for the Lean Approach: Waterfall or Agile?
	5. Lean Requirements Gathering
	6. Lean Requirements Documentation
	7. Lean UX Design and Usability
	8. Lean Technical Design and DevOps
	9. Lean Quality Assurance and Testing
	10. Lean Project Management

